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and l transformations of all the form fields and their dynamics. We also formulate the five

dimensional gauged supergravity theories using the closure of the supersymmetry algebra.

We show that this closes on the bosonic field content predicted by E11 and we derive the

field transformations and the dynamics of this theory. The results are in precise agreement

with those found from the E11 formulation. This provides a very detailed check of E11

and also the first substantial evidence for the generalised space-time. The results can be

generalised to all gauged maximal supergravities, thus providing a unified framework of all

these theories as part of E11.
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1. Introduction

One of the most surprising discoveries in the development of supergravities was the hid-

den symmetries in the maximal supergravity theories in lower dimensions. The first to

be discovered, in 1978, was the E7 symmetry in four dimensions [1], while the last to be

found in 1983 was the SL(2,R) symmetry of ten-dimensional IIB supergravity [2]. The

highest dimension in which a maximal supergravity multiplet exists is eleven, and the

corresponding theory [3] is unique. This theory compactified on a circle gives rise to the

ten-dimensional IIA supergravity [4], while the IIB theory [2, 5] has no higher dimen-

sional origin. In any dimension below ten, maximal supergravity theories are unique and

can be obtained by torus dimensional reduction of both the ten dimensional theories and

the eleven-dimensional one. The hidden symmetry increases with the number of compact

dimensions, and for instance one gets E6 in five dimensions [6, 7] and E8 in three dimen-

sions [8], corresponding to compactifying the eleven dimensional theory on a six-torus and

on an eight-torus respectively.
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For many years it was universally assumed that these large symmetries were a quirk

of dimensional reduction on a torus and that they were not present in the uncompactified

theories. In particular, it was believed that there was no hidden symmetry in eleven di-

mensional supergravity. The reason for this is that these hidden symmetries are associated

with the scalars that occur in these theories, and more precisely the hidden symmetries

are non-linearly realised in the scalar sector. The fact that the eleven-dimensional theory

has no scalars was believed not to leave room for any large hidden symmetry. Further-

more, the symmetries found in the dimensionally reduced theories are internal in that they

commute with the spacetime symmetries. It appeared not to be possible to realise these

symmetries in the uncompactified theory, where they would have to act non-trivially on

the gravitational field.

However, in 2001 it was conjectured [9] that eleven dimensional supergravity could be

extended so as to have a non-linearly realised infinite-dimensional Kac-Moody symmetry

called E11, whose Dynkin diagram is shown in figure 1. We now list the main results

supporting this conjecture.

• Eleven dimensional supergravity itself can be formulated as a non-linear realisa-

tion [10] of an algebra. This non-linear realisation naturally gives rise to both a

3-form and a 6-form, and the resulting field equations are first order duality re-

lations, whose divergence reproduces the 3-form second-order field equations of 11-

dimensional supergravity. The eleven-dimensional gravity field describes non-linearly

SL(11,R), which is a subalgebra of this algebra. Indeed, gravity in D dimensions can

be described as a non-linear realisation of the closure of the group SL(D,R) with the

conformal group [10], as was shown in the four dimensional case in [11].

• E11 is the smallest Kac-Moody algebra which contains the algebra found in the non-

linear realisation above. This E11 algebra is infinite-dimensional, and the E11 non-

linear realisation contains an infinite number of fields with increasing number of

indices. The first few fields are the graviton, a three form, a six form and a field

which has the right spacetime indices to be interpreted as a dual graviton. This is

the field content of eleven dimensional supergravity, and keeping only the first three of

these fields one finds that the non-linear realisation of E11 reduces to the construction

discussed in the first point and so results in the dynamics of this theory [9].

• Theories in D dimensions arise from the E11 non-linear realisation by choosing a suit-

able SL(D,R) subalgebra, which is associated with D-dimensional gravity. The AD−1

Dynkin diagram of this subalgebra, called the gravity line, must include the node la-

belled 1 in the Dynkin diagram of figure 1. In ten dimensions there are two possible

ways of constructing this subalgebra, and the corresponding non-linear realisations

give rise to two theories that contain the fields of the IIA and IIB supergravity theo-

ries and their electromagnetic duals [9, 12]. Below ten dimensions, there is a unique

choice for this subalgebra, and this corresponds to the fact that maximal supergravity

theories in dimensions below ten are unique. Again, the non-linear realisation in each

case describes, among an infinite set of other fields, the fields of the corresponding
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supergravity and their electromagnetic duals. In each dimension, the part of the

E11 Dynkin diagram which is not connected to the gravity line corresponds to the

internal hidden symmetry of the D dimensional theory. This not only reproduces all

the hidden symmetries found long ago in the dimensionally reduced theories, but it

also gives an eleven-dimensional origin to these symmetries.

• The Weyl transformations of E11 are the known U duality symmetries found in the

IIA and IIB supergravity theories and also when these are dimensionally reduced on

tori [13].

• Amongst the infinitely many fields in the non-linear realisation of E11, there is an

infinite preferred set that describes all possible dualisations of the on-shell degrees

of freedom of the eleven-dimensional supergravity theory. This lifts the infinite set

of dualities that occur in two dimensions to eleven dimensions. All the infinitely

many remaining fields in eleven dimensions have at least one set of ten or eleven

antisymmetric indices, and therefore they do not correspond to on-shell propagating

degrees of freedom [14].

All the maximal supergravity theories mentioned so far are massless in the sense that no

other dimensional parameter other than the Planck scale is present. In fact, even this pa-

rameter can be absorbed into the fields such that it is absent from the equations of motion.

There are however other theories that are also maximal, i.e. invariant under 32 supersym-

metries, but are massive in the sense that they possess additional dimensionful parameters.

These can be viewed as deformations of the massless maximal theories. However, unlike the

massless maximal supergravity theories they can not in general be obtained by a process

of dimensional reduction and in each dimension they have been determined by analysing

the deformations that the corresponding massless maximal supergravity admits. The first

example of such a theory was found in four dimensions [15], and it results from gauging an

SO(8) subgroup of the global symmetry E7. The highest dimension for which a massive

deformation is allowed is ten, and the corresponding massive theory was discovered by

Romans [16]. This theory possesses a single additional mass parameter and can be thought

of as a deformation of the IIA supergravity theory in which the two-form receives a mass

via a Higgs mechanism.

With the exception of the Romans theory, all the massive maximal supergravities

possess a local gauge symmetry carried by vector fields that is a subgroup of the symmetry

group G of the corresponding maximal supergravity theory, and are therefore called gauged

supergravities. In general these theories also have potentials for the scalars fields which

contain the dimensionful parameters as well as a cosmological constant. Another typical

feature of massive maximal supergravities is that their field content is not usually the

same as their massless counterparts. As an example consider the five-dimensional SO(6)

gauged supergravity [17]. While the massless maximal supergravity theory [6, 7] contains

27 abelian vectors, the gauged one describes 15 vectors in the adjoint of SO(6), as well as

12 massive 2-forms satisfying self-duality conditions. One can regard this as an example of

the rearrangement of degrees of freedom induced by the Higgs mechanism. Given that E11
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contains in any dimensions all the fields of the corresponding supergravity together with

their magnetic duals, this phenomenon turns out to be automatically encoded in the E11

non-linear realisation.

In recent years there have been a number of systematic searches for gauged maximal

supergravity theories and in particular in nine dimensions and in dimension from seven

to three all such theories have been classified [18 – 20]. This classification is in perfect

agreement with E11, and this leads us to the last three points in our list of the main results

supporting the E11 conjecture, which are related to the analysis of the E11 fields that do

not correspond to the propagating fields of supergravity or to their duals.

• The cosmological constant of ten-dimensional Romans IIA theory can be described as

the dual of a 10-form field-strength [21], and the supersymmetry algebra closes on the

corresponding 9-form potential [22]. This theory was found to be a non-linear reali-

sation [23] which includes a 9-form. This 9-form is automatically encoded in E11 [24],

where it arises in the dimensional reduction of the eleven-dimensional field Aa1...a10,(bc)

in the irreducible representation of SL(11,R) with ten antisymmetric indices a1 . . . a10

and two symmetric indices b and c. Therefore E11 not only contains Romans IIA,

but it also provides it for the first time with an eleven-dimensional origin [25].

• The E11 non-linear realisation in ten dimensions also predicts the number of

spacetime-filling 10-forms that arise in IIA and IIB supergravities, the result being

that there are an SL(2,R) quadruplet and a doublet of 10-forms in IIB and two

10-forms in IIA [24]. Although these forms are non-propagating and have no field

strength, they are associated to spacetime-filling branes whose presence is crucial for

the consistency of orientifold models. The analysis of 10-forms performed imposing

the closure of the supersymmetry algebra shows perfect agreement with the E11

predictions, for both the IIB [26] and the IIA [27] case. Also, the gauge algebra that

supersymmetry implies is exactly reproduced by E11 [28].

• By studying the eleven-dimensional fields of the E11 non-linear realisation, one can

determine all the forms, i.e. fields with completely antisymmetric indices, that arise

from dimensional reduction to any dimension [29]. In particular, in addition to all

the lower rank forms, this analysis gives all the D − 1-forms and the D-forms in

D dimensions. The D − 1 and D-forms predicted by E11 can also be derived in

each dimension separately [30]. The D − 1-forms have D-form field strengths, that

are related by duality to the mass deformations of gauged maximal supergravities,

and the E11 analysis shows perfect agreement with the complete classification of

gauged supergravities performed in [19, 20]. Therefore E11 not only contains all

the possible massive deformations of maximal supergravities in a unified framework,

but it also provides an eleven-dimensional origin to all of them. Indeed, while some

gauged supergravities were known to be obtainable using dimensional reduction of

ten or eleven dimensional supergravities, this was not generically the case. As a

result the gauged supergravities were outside the framework of M-theory as it is

usually understood. The D-forms are associated to spacetime-filling branes in D
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dimensions, which again play a crucial role in string theory, and their classification

was not known, apart from the ten-dimensional case.

The net upshot of all this is that there is overwhelming evidence for an E11 symmetry in

the low energy dynamics of what is often called M theory. The above evidence concerns

the adjoint representation of E11, or the part of the non-linear realisation that involves the

fields associated with the E11 generators. However, there is also the question of how space-

time is encoded in the theory. In the non-linear realisations mentioned above the generator

of space-time translations Pa was introduced by hand in order to encode the coordinates of

space-time. From the beginning it was understood that this was an ad-hoc step that did not

respect the E11 symmetry. It was subsequently proposed [31] that one could include an E11

multiplet of generators which had as its lowest component the generator of space-time trans-

lations. This was just the fundamental representation of E11 associated with the node la-

belled 1 in the Dynkin diagram of figure 1 and it is denoted in this paper by l. The evidence

for the relevance of the l multiplet and this method of introducing space-time is as follows.

• The infinitely many generators in the l multiplet have an increasing number of eleven-

dimensional space-time indices. The next two generators after the Pa’s are objects

with two and five totally anti-symmetrised indices that can be identified with the

central charges of the eleven-dimensional supersymmetry algebra, then followed by

an infinite number of further elements [31].

• The members of the l multiplet can be identified with the brane charges. This is

clearly the case at the lowest levels, but one can show that to every element of l there

corresponds a field in the adjoint representation of E11 to which the corresponding

brane would couple [32].

• By decomposing the l multiplet into representations of SL(D,R)⊗G, where SL(D,R)

is the E11 sub-algebra associated with the D-dimensional non-linear realisation of

gravity and G the internal symmetry group as described above, one can find the

brane charges predicted in the D dimensional theory. For each type of brane, i.e.

point particle, string, etc, one finds charges that are in multiplets of G [33]. The low

level results are summarised in table 1 [33, 34]. In fact, the very lowest level brane

multiplets had previously been found [35] by applying the known U-duality rules to

a familiar brane charge. The results from the l multiplet are in complete agreement

with those found previously. This check is comparable to the later one discussed

above for the deformation forms of gauged supergravities. As in that case, E11 also

provides a previously missing unifying framework for the brane charges, many of

which previously had no higher dimensional origin and could not be identified with

charges in the supersymmetry algebra.

• The dynamics is taken to be the non-linear realisation based on E11⊗s l which stands

for the semi-direct product between the two algebras. The presence of the l generators

results in an infinite number of coordinates which in eleven dimensions take the form

xa, xa1a2 , xa1...a5 , xa1...a7,b, xa1...a8 , . . . (1.1)

– 5 –



J
H
E
P
0
2
(
2
0
0
8
)
0
3
9

As a result, the fields would generically depend on a generalised space-time that is

infinite dimensional. This has the nice interpretation in that one uses a formulation

of space-time that includes all possible ways of measuring it and not just the xa

corresponding to a point particle [31]. The non-linear realisation mentioned above

corresponds to considering the lowest order in the l multiplet, i.e. only considering

the dependence on the usual coordinate xa of spacetime. This has similar aspects to

the subsequently proposed generalised geometry, as already pointed out in [36]. The

additional coordinates as seen in D dimensions can be read off from table 1.

Thus although there is very good evidence that the l multiplet does correctly account for

the brane charges, there is so far very little evidence for the generalised space-time that

should be present in the non-linear realisation. One of the main results in this paper is to

find the dynamics of the five dimensional gauged supergravities using their formulation as

a E11 ⊗s l non-linear realisation. In this calculation some of the generators of l, and their

corresponding coordinates, will play a crucial role.

An alternative method of introducing space-time has been considered in the context

of E10 [37]. In this approach the fields depend only on time and the spatial derivatives of

the fields are conjectured to be some of the higher level fields in E10 which are known to

have the appropriate A9 structure.

There are two obvious problems in trying to formulate the dynamics of gauged su-

pergravities using non-linear realisations. The first is that the field-strengths that arise in

gauged supergravities contain terms that have no space-time derivatives while the dynam-

ics which follows from a non-linear realisation is usually constructed from the Cartan forms

that explicitly contain derivatives. The second problem is that the gauged supergravity

theories involve vector fields that possess non-abelian gauge transformations. Given that

E11 is automatically democratic [9, 12, 24], in the sense that each form appears with its

magnetic dual, one has to introduce fields that are dual to the non-abelian vectors. For

instance these would be 2-forms in five dimensions. These 2-forms transform under the

just mentioned Yang-Mills transformations, but also possess their own gauge symmetry.

In this paper we want to show how the dynamics of gauged supergravities arises in

the E11 non-linear realisation. We will see that the two problems above are solved. The

first problem is solved by the presence of the generalised coordinates. One finds terms

independent of space-time because some of the derivatives in the Cartan forms are not

those of the familiar space-time, but of the higher coordinates in the generalised space-

time and so they read off the dependence of the fields on these coordinates which as it

turns out is rather constrained. The second problem is solved by considering all the E11

form fields and dual form fields and their correspondingE11 transformations in the presence

of the generalised coordinates. We will focus in particular on the five-dimensional case,

and show that the non-linear realisation gives the required gauge-covariant field strengths

provided that each form transforms with respect to the gauge parameter of the form of

higher rank. This means that the vector Aµ has a shift gauge transformation δAµ ∼ Σµ

with respect to the gauge parameter Σµ of the 2-form, i.e. δBµν = 2∂[µΣν], and the 2-form

has a shift gauge transformation with respect to the parameter of the 3-form, and so on. It
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is this requirement that makes it possible to write a field strength for the 2-form Bµν that

is covariant under the non-abelian gauge transformations associated with Aµ and invariant

under its own gauge transformations Σµ, and thus this result deeply relies on the fact that

one has a fully democratic description. Proceeding this way one can write down gauge-

covariant field strengths and gauge-invariant duality relations in all cases. In particular,

in the five-dimensional case the vectors are dual to the 2-forms and the 3-forms are dual

to the scalars. This construction can be generalised to any gauged maximal supergravity,

and more generally to any gauged theory that admits a Kac-Moody description.

In order to provide a check of our E11 derivation of gauged supergravities in five dimen-

sions we consider the supersymmetry transformations on the democratic set of form fields

required by E11. We find that the supersymmetry algebra of gauged maximal supergravity

in five dimensions does indeed close on the 2-forms and the 3-forms predicted by E11, pro-

vided that the duality relations between the 2-forms and the 1-forms, as well as between

the 3-forms and the scalars, are satisfied. We recover precisely the dynamics implied by

the E11 non-linear realisation. In fact the features of the gauge algebra associated to the

higher rank fields was discussed in an independent bottom-up approach in [38], where the

results of [19, 20] were extended to higher rank forms. Our result therefore shows for the

first time that supersymmetry is compatible with this extension.

In order to derive these results, we first have to compare the E11 and the supergravity

results in the massless case. We therefore consider the five-dimensional case, and we first

determine the massless dynamics as results from E11. We then show that the supersym-

metry algebra of massless five-dimensional supergravity admits a democratic formulation,

and we close the algebra on all the forms in the theory with the exception of the spacetime-

filling forms. The results we find using supersymmetry exactly reproduce the ones obtained

from E11, and we show in detail how the computations are performed in the two cases, so

that the reader can appreciate how simple they are on the E11 side. We then consider the

gauged case, and describe the democratic formulation of gauged maximal supergravity in

five dimensions using the supersymmetry algebra. We finally compare these results with

those found from the E11 ⊗s l non-linear realisation and find complete agreement. This

analysis shows the crucial role that the l multiplet and its associated generalised coordinates

have in describing the dynamics of gauged maximal supergravities.

The paper is organised as follows. In section 2 we describe how the massless dynamics

arises in the E11 non-linear realisation. Before considering the five-dimensional case, we

review the eleven-dimensional one to make the reader familiar with the algebra. In section

3 we show that the supersymmetry algebra of massless maximal supergravity in five di-

mensions closes on the 2-forms and 3-forms dual to the vectors and the scalars respectively,

and on the 4-forms predicted by E11. The field strengths of the 4-forms are dual to the

mass deformation parameters, and thus they vanish in the massless theory. Section 4 is

devoted to the analysis of the supersymmetry algebra of gauged maximal five-dimensional

supergravity. We show that the algebra closes on the 2-forms and the 3-forms, and we

determine the duality relation between the field strengths of the 4-forms and the mass

deformation parameters. In section 5 we show how the E11 ⊗s l non-linear realisation gives

rise to gauged maximal supergravities, focusing on the five-dimensional case. Section 6 is
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Figure 1: The E11 Dynkin diagram corresponding to 11-dimensional supergravity.

devoted to a detailed discussion of the E11 ⊗s l non-linear realisation for the case of the

five-dimensional SO(6) gauged supergravity. Section 7 contains the conclusions. We also

include two appendices. In appendix A we determine the gauge transformations of the

5-forms of maximal five-dimensional supergravity from E11, and in appendix B we show

how the gauging results from generalised coordinates in the non-linear realisation for a toy

model that illustrates the main features of section 5.

2. E11 and massless dynamics

In this section we will show how the E11 non-linear realisation generates the gauge trans-

formations and the field strengths of all the fields with completely antisymmetrised indices

in the five-dimensional case. As a preliminary step to make the reader familiar with the

notation, we will first review the original E11 computation in eleven dimensions [9], where

the gauge transformations and field strengths of the 3-form and its dual 6-form of eleven-

dimensional supergravity were derived.

In [9] it was conjectured that an extension of eleven dimensional supergravity can be

described by a non-linear realisation based on the Kac-Moody algebra E11 resulting from

the Dynkin diagram of figure 1. The horizontal line in the Dynkin diagram, associated

with the SL(11,R) subalgebra that in the non-linear realisation is associated to the eleven

dimensional gravity sector of the theory, is called the gravity line.

The generators of E11 are essentially the ones of SL(11,R) together with the generators

Rabc and Rabc, in the representations of SL(11,R) with three antisymmetric indices, asso-

ciated to the exceptional node, and multiple commutators thereof, subject to the Jacobi

identities. More precisely, E11 is defined as a Kac-Moody algebra, which is obtained by mul-

tiple commutators of the Chevalley generators subject to the Serre relations. The multiple

commutators of the Chevalley generators of SL(11,R) lead to all the generators of SL(11,R),

while the multiple commutators of these with the Chevalley generator associated with the

exceptional node lead to Rabc and Rabc. All the other generators are then found from mul-

tiple commutators of Rabc and Rabc, subject to the Serre relations. It is useful to classify

the generators of the algebra in terms of the number of times the generator Rabc occurs

in the commutators defining them, as was shown in [9]. This was subsequently called the

level. As an example, the generator with 6 antisymmetric indices occurs in the commutator
[

Rabc, Rdef
]

= 2Rabcdef (2.1)

and therefore corresponds to level 2. The generator Rabc has level −1, and therefore all

the generators with lower indices have negative level. In general, the generators at level

– 8 –



J
H
E
P
0
2
(
2
0
0
8
)
0
3
9

l have 3l upper indices if l is positive, and −3l lower indices if l is negative. The only

E11 generators whose SL(11,R) indices are completely antisymmetric are Rabc and Ra1...a6 ,

together with their negative level counterparts.

By definition, the non-linear realisation must be invariant under

g → g0 g h, (2.2)

where g0 is a global E11 transformation and h ∈ H is a local transformation (to be precise,

H is the Cartan involution invariant subalgebra, which is the infinite-dimensional gen-

eralisation of the maximal compact subalgebra of finite-dimensional groups). This local

transformation can be used to put the group element in the Borel subgroup, which is the

one generated by the Cartan subalgebra and the generators associated with the positive

roots. As a result, there is a one-to-one correspondence between the fields of the theory and

the generators of E11 with non-negative level. At level zero, this results in the description

of gravity as a non-linear realisation, and the level zero field is therefore the graviton. The

generator Rabc at level 1 corresponds to the 3-form Aabc of 11-dimensional supergravity

and the generator Ra1...a6 at level 2 to its 6-form dual Aa1...a6 . The generator at level 3

Ra1...a8,b in the irreducible hooked Young tableaux representation with 8 antisymmetric

indices corresponds to the dual graviton [9]. At level 3 one might expect also a generator

with 9 completely antisymmetric indices, but this is ruled out due to the Jacobi identities.

In this paper, we want to analyse the gauge transformations and field strengths of the

fields with completely antisymmetric indices in E11, and thus in this 11-dimensional case

we are interested in the fields up to and including level 2. We therefore write down only

the relevant part of the group element, which is

g = exp(xµPµ) gA, (2.3)

where

gA = exp

(

1

6!
Aa1...a6R

a1...a6

)

exp

(

1

3!
Aa1...a3R

a1...a3

)

(2.4)

is the part of g that contains the 3-form and the 6-form. This way of writing down the

group element differs from the original one of [10, 9] only by terms of higher level, which

do not affect the computation we are reviewing. The momentum generator Pµ introduces

spacetime, and is only the first part of an infinite dimensional representation of E11 which

we call the l representation [31], that will also be discussed in detail in section 5. A global

E11 transformation of g acting from the left leaves the Maurer-Cartan form

V = g−1dg (2.5)

invariant. In particular, we are interested in the E11 transformations generated by

g
(3)
0 = exp

(

1

3!
aa1...a3R

a1...a3

)

(2.6)

and

g
(6)
0 = exp

(

1

6!
aa1...a6R

a1...a6

)

, (2.7)
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where aa1...a3 and aa1...a6 are infinitesimal and constant. These parameters are global trans-

formations of the E11 fields, and in particular we can read the transformations of the fields

Aa1...a3 and Aa1...a6 in (2.4). These transformations will be promoted to gauge transforma-

tions as we will see in the following, and are determined computing the part of g0gA that

has the form gA′ , where A′ are the transformed fields. We use the operator identities

expC expB = . . . exp

(

− 1

n!
[B, [B . . . [B, [B,C]] . . . ]]

)

. . .

exp

(

−1

2
[B, [B,C]]

)

exp(−[B,C]) expB expC (2.8)

and

expC expB = . . . exp

(

− 1

(n+ 1)!
[B, [B . . . [B, [B,C]] . . . ]]

)

. . .

exp

(

−1

6
[B, [B,C]]

)

exp

(

−1

2
[B,C]

)

exp(B + C), (2.9)

where B and C are any operators and we are only considering first order in C, so that we

neglect C2 and higher order. Multiplying eq. (2.8) by exp(−C) one recovers the well-known

Baker-Campbell-Hausdorff formula. Eq. (2.9) can be verified order by order expanding the

exponentials and comparing powers of B. In our case, the operator B corresponds to A ·R,

and the operator C to a · R, and neglecting higher order in C corresponds to the fact

that the parameters a are infinitesimal. When applied to our case, eqs. (2.8) and (2.9)

are particularly useful because they preserve the form of the group element. Defining

δA(x) = A′(x) −A(x), we obtain

δAa1...a3 = aa1...a3

δAa1...a6 = aa1...a6 + 20a[a1...a3
Aa4...a6]. (2.10)

We now want to determine the field strengths of Aa1...a3 and Aa1...a6 from the Maurer-

Cartan form. To this end, we only need to consider

g−1
A dgA. (2.11)

We use the operator identities

e−BdeB = dB +
1

2
[dB,B] +

1

3!
[[dB,B], B] +

1

4!
[[[dB,B], B], B] + · · · (2.12)

and

e−BDeB = D + [D,B] +
1

2
[[D,B], B] +

1

3!
[[[D,B], B], B] + · · · (2.13)

valid for any pair of operators B and D. Eq. (2.12) can be written in the compact form

e−BdeB =
1 − e−B

B
∧ dB, (2.14)

where the ∧ product denotes multiple commutators, so that

B ∧C = [B,C] B2 ∧ C = [B, [B,C]] (2.15)
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and so on. Identifying the operators B and D with the relevant A ·R’s and their derivatives

and commutators, one obtains

dxµg−1
A ∂µgA = dxµ

[

1

3!
∂µAa1...a3R

a1...a3

+
1

6!
(∂µAa1...a6 + 20∂µAa1...a3Aa4...a6)R

a1...a6 + · · ·
]

(2.16)

where the dots correspond to higher level operators. The quantities

Gµa1...a3 = ∂µAa1...a3

Gµa1...a6 = ∂µAa1...a6 + 20∂µA[a1...a3
Aa4...a6] (2.17)

are invariant under the transformations of eqs. (2.10).

We now want to describe the dynamics out of the E11-invariant quantities of eq. (2.17).

The requirement is that the system leads to massless equations for the Goldstone fields

Aa1...a3 and Aa1...a6 . For this to lead to a consistent dynamics, one needs to promote the

global symmetries of eq. (2.10) to local ones, because a massless field of non-vanishing spin

requires gauge invariance. It turns out that if one considers the closure of E11 with the

eleven-dimensional conformal group, and considers transformations of the fields that result

from multiple commutators of the generators of E11 with the conformal ones, the most

general transformation that results is a gauge transformation dΛ, where Λ is an arbitrary

function of x [10]. This result is rather remarkable, because it deeply relies on how the

conformal transformations act on the fields. The parameter a can be identified with the

x-independent component of dΛ, and the full transformation can be obtained replacing

the parameter a with dΛ in the E11 transformations. For fields with totally antisymmetric

indices, the gauge-invariant field strengths are obtained simply antisymmetrising the indices

of the G’s in the Maurer-Cartan form.

One therefore obtains from eq. (2.17) the field strengths

Fa1...a4 = 4G[a1...a4] = 4∂[a1
Aa2a3a4]

Fa1...a7 = 7G[a1...a7] = 7∂[a1
Aa2...a7] + 35F[a1...a4

Aa5a6a7] (2.18)

which are invariant under the gauge transformations

δAa1...a3 = 3∂[a1
Λa2a3]

δAa1...a6 = 6∂[a1
Λa2...a5] + 60∂[a1

Λa2a3Aa4a5a6]. (2.19)

Form the field strengths of eq. (2.18), the unique non-trivial first order equation that can

be written is a duality condition of the form

Fa1...a4 =
1

7!
ǫa1...a4b1...b7F

b1...b7 , (2.20)

which leads to second order field equations for both the 3-form and the 6-form [10].

The supersymmetry algebra of the original 11-dimensional supergravity, which includes

a 3-form potential, can be extended in order to include a 6-form dual to the 3-form. In this
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Figure 2: The E11 Dynkin diagram corresponding to 5-dimensional supergravity. The internal

symmetry group is E6(+6).

democratic formulation, the supersymmetry algebra on the 6-form closes using the duality

relation between the field strengths of the 3-form and the 6-form, and it generates exactly

the gauge transformations of eq. (2.19), up to field redefinitions. In the remaining of this

section, we want to determine the gauge transformations of the fields of five dimensional

maximal supergravity in the democratic formulation which results from E11.

We now consider the E11 non-linear realisation giving rise to a five-dimensional space-

time. The corresponding Dynkin diagram can be drawn as in figure 2, where the horizontal

line is the gravity line associated with SL(5,R) and one can see the appearance of the ex-

ceptional group E6, that is the internal symmetry group because it is the part of the Dynkin

diagram that is not connected to the gravity line.

The generators with completely antisymmetric indices, with the exception of the space-

filling 5-forms, are given by

Rα Ra,M Rab
M Rabc,α Rabcd

[MN ], (2.21)

where Rα, α = 1, . . . , 78 are the E6 generators, and an upstairs M index, M = 1, . . . , 27,

corresponds to the 27 representation, a downstairs M index to the 27 and a pair of anti-

symmetric downstairs indices [MN ] correspond to the 351 as the tensor product of 27 ⊗ 27

in the anti-symmetric combination only contains the 351 [29].

We now write the commutators of the E11 generators of eq. (2.21) [29] as explained

above for the 11-dimensional case. We write the commutation relations for the E6 genera-

– 12 –
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tors in the form
[

Rα, Rβ
]

= fαβ
γR

γ , (2.22)

where fαβ
γ are the structure constants of E6. The commutator of these generators with

the 1-form generator Ra,M is determined by the fact that the Jacobi identity involving Rα,

Rβ and Ra,M implies that this generator is in a representation of E6, which is in fact the

27 as noted above, and it is given by

[

Rα, Ra,M
]

= (Dα)N
MRa,N , (2.23)

where (Dα)N
M are the generators of E6 in this representation and so obey

[

Dα,Dβ
]

M

N = fαβ
γ(Dγ)M

N . (2.24)

The two form generators are in the 27 representation and so their commutator with the

generators of E6 is given by

[

Rα, Rab
M

]

= −(Dα)M
NRab

N . (2.25)

This involves the matrix (Dα)M
N in the way that follows from the fact that if we contract

the indices of a 27 with a 27 we find an E6 invariant. The E6 commutator of the Rabc,α is

given by
[

Rα, Rabc,β
]

= fαβ
γR

abc,γ , (2.26)

as it is in the adjoint representation while that of the Rabcd
[MN ] generator is given by

[

Rα, Rabcd
[MN ]

]

= −(Dα)M
PRabcd

[PN ] − (Dα)N
PRabcd

[MP ]. (2.27)

The next commutators of the E11 algebra to consider are those of the 1-forms which

yield a 2-form and are given by

[

Ra,M , Rb,N
]

= dMNPRab
P , (2.28)

where dMNP is required by the Jacobi identity involving Rα, Ra,M and Rb,N to be an

invariant tensor transforming in the 27⊗27⊗27 representation and so it is also a symmetric

tensor. The commutator of a 1-form with a 2-form generator is a 3-form generator and

the Jacobi identities involving Rα, Ra,N and Rbc
M imply that this is given in terms of the

(Dα)M
N matrix as follows:

[

Ra,N , Rbc
M

]

= gαβ(Dα)M
NRabc,β, (2.29)

where gαβ is the Cartan-Killing metric of E6. As mentioned above the 4-form generator

is in the 351 representation and as this is the only representation in the anti-symmetric

tensor product of 27 ⊗ 27 it appears on the right-hand side of the commutators of two

2-forms as
[

Rab
M , R

cd
N

]

= Rabcd
[MN ]. (2.30)
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The commutator of the 1-form with the 3-form also lead to the 4-form, and can be written as
[

Ra,P , Rbcd,α
]

= SαP [MN ]Rabcd
[MN ], (2.31)

where SαP [MN ] is an invariant tensor. Using

gβγ(Dα)M
N (Dγ)N

M = kδα
β (2.32)

one can show that the Jacobi identities constrain the invariant tensor SαP [MN ] to satisfy

SαP [MN ] +
1

k
gβγ(DαDβ)Q

PSγQ[MN ] = −1

k
(Dα)Q

[MdN ]PQ. (2.33)

This equation is solved by

SαP [MN ] = −1

2
Dα

Q
[MdN ]QP , (2.34)

and leads to the further identity

gαβD
α
Q

(PSβR)[MN ] = −1

2
δ
[M
Q dN ]PR. (2.35)

We now consider the E11 group element g in five dimensions. As in 11 dimensions, we

neglect the contribution of all the other generators and we write g in the form

g = exp(xµPµ) gA gφ, (2.36)

where with respect to (2.3) we have also included the scalar contribution gφ, and now

gA = exp
(

AMN
a1...a4

Ra1...a4
MN

)

exp
(

gαβA
α
a1...a3

Ra1...a3,β
)

exp
(

AM
a1a2

Ra1a2
M

)

exp
(

Aa,MRa,M
)

. (2.37)

We determine the E11 transformations of each of the fields in (2.37) using the same analysis

that was reviewed for the 11-dimensional case at the beginning of this section. Acting with

g
(4)
0 = exp

(

aMN
a1...a4

Ra1...a4
MN

)

(2.38)

leads to a transformation of the 4-form field

δAMN
a1...a4

= aMN
a1...a4

, (2.39)

while acting with

g
(3)
0 = exp

(

gαβa
α
a1...a3

Ra1...a3,β
)

(2.40)

leads to

δAα
a1...a3

= aα
a1...a3

. (2.41)

Indeed one can see from eq. (2.9) that each of these group elements can not lead to ad-

ditional transformations to any of the fields we are considering, that have at most four

indices. The action of

g
(2)
0 = exp

(

aM
a1a2

Ra1a2
M

)

(2.42)
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instead, produces a transformation of the 2-form as well as the 4-form, as can be deduced

from eqs. (2.9) and (2.8). Using these equations, together with the commutation relation

of eq. (2.30), the form of these transformations is straightforward to determine, and the

result is

δAMN
a1 ...a4

=
1

2
a

[M
[a1a2

A
N ]
a3a4]

δAM
a1a2

= aM
a1a2

. (2.43)

The last transformation we consider is the one generated by

g
(1)
0 = exp

(

aa,MR
a,M
)

, (2.44)

which using eqs. (2.9) and (2.8) can be seen generating transformations of all the fields.

The result is

δAMN
a1...a4

= a[a1,PA
α
a2a3a4]S

βP [MN ]gαβ − 1

24
a[a1,PAa2,QAa3,RAa4],Sd

PQTDα
T

RSβS[MN ]gαβ

−1

4
a[a1,PAa2,QA

[M
a3a4]d

N ]PQ

δAα
a1a2a3

= a[a1,MA
N
a2a3]D

α
N

M +
1

6
a[a1,MAa2,NAa3],Pd

MNQDα
Q

P

δAM
a1a2

=
1

2
a[a1,NAa2],Pd

MNP

δAa,M = aa,M . (2.45)

We now determine from the Maurer-Cartan form the field strengths of all the fields

of which we have determined the E11 transformations. As in the 11-dimensional case, we

only need to consider gA in eq. (2.37), and using eqs. (2.12) and (2.13) one finds

g−1
A dgA = dxµ

[

Gµa,MRa,M +GM
µa1a2

Ra1a2
M +Gα

µa1a2a3
Ra1a2a3

α +GMN
µa1...a4

Ra1...a4
MN + . . .

]

,

(2.46)

where the dots correspond to operators with more than four indices, and the G’s are

invariant under the transformations of eqs. (2.39), (2.41), (2.43) and (2.45), and are given by

Gµa,M = ∂µAa,M

GM
µa1a2

= ∂µA
M
a1a2

+
1

2
∂µA[a1,NAa2],Pd

MNP

Gα
µa1a2a3

= ∂µA
α
a1a2a3

− 1

6
∂µA[a1,MAa2,NAa3],Pd

MNQDα
Q

P − ∂µA
M
[a1a2

Aa3],ND
α
M

N

GMN
µa1...a4

= ∂µA
MN
a1...a4

− 1

24
∂µA[a1,PAa2,QAa3,RAa4],Sd

PQTDα
T

RSαS[MN ]

−1

2
∂µA

P
[a1a2

Aa3,QAa4],RD
α
P

QSαR[MN ] +
1

2
∂µA

[M
[a1a2

A
N ]
a3a4]

+∂µA
α
[a1a2a3

Aa4],PS
αP [MN ]. (2.47)

As it is clear from eq. (2.36), the Cartan forms actually occur as

g−1
φ g−1

A dgAgφ, (2.48)
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which means that they are given by

g−1
φ G ·Rgφ, (2.49)

where the G’s are given in eq. (2.47). One must also include the Cartan form for the scalars

which is

g−1
φ ∂µgφ. (2.50)

For example we find for the vector Cartan form

g−1
φ ∂µAa,MR

a,Mgφ = ∂µAa,M ṼM
ij R

a,ij, (2.51)

where

g−1
φ Ra,Mgφ = ṼM

ij R
a,ij, (2.52)

and the latter is just Ra,M decomposed into the 27 representation of the local subalgebra

USp(8). Here the USp(8) indices i, j = 1, . . . , 8 of ṼM
ij are antisymmetric and traceless,

giving rise to the 27 of USp(8). In terms of the parametrisation gφ = eφαRα
the scalars

Ṽ M
ij are defined by

ṼM
ij = exp (φαD

α)Mij , (2.53)

where we have decomposed the lower index in the 27 of E6 under USp(8). This decompo-

sition under USp(8) reflects the fact that the Cartan forms only transform under the local

subgroup USp(8) and are inert under the global group E6. Similar considerations apply to

the other Cartan forms. For the case of the 2-form we have

g−1
φ Rab

Mgφ = V ij
MRab

ij , (2.54)

where V ij
M are defined in a similar way to eq. (2.53), but now the generators act on the

complex conjugate representation, and therefore the scalars V ij
M are the inverse of Ṽ M

ij .

In order to obtain massless field equations for the fields, the same arguments that

lead to gauge-invariant equations in eleven dimensions hold here. We thus consider the

completion of E11 with the conformal group. This leads to an infinite-dimensional extension

of the symmetries, whose net result is to replace the global parameters a with dΛ, where

Λ is a gauge parameter. The corresponding gauge invariant field-strengths result from the

G’s of eq. (2.47) once all the indices are completely antisymmetrised.

One therefore obtains from eq. (2.47) the field strengths

Fab,M = 2G[ab],M

FM
abc = 3GM

[abc]

Fα
abcd = 4Gα

[abcd]

FMN
abcde = 5GMN

[abcde], (2.55)

which are invariant under the gauge transformations obtained from

eqs. (2.39), (2.41), (2.43) and (2.45), after having promoted the E11 parameters to
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local ones according to

aa,M = ∂aΛM

aM
ab = 2∂[aΛ

M
b]

aα
abc = 3∂[aΛ

α
bc]

aMN
abcd = 4∂[aΛ

MN
bcd]. (2.56)

The actual field strengths are multiplied by factors of V ij
M or ṼM

ij as explained above for

the Cartan forms.

The unique equations which are invariant under the transformations of the non-linear

realisation above and are Lorentz and USp(8) covariant are

VMijF
M
abc ∼ ǫabcdeṼ

M
ij F

de
M VMij Ṽ

N
kl F

α
abcd ∼ Dα

M
Nǫabcde

(

g−1
φ ∂egφ

)

ijkl
. (2.57)

The non-linear realisation also possesses local transformations associated with the Cartan

involution invariant subalgebra. The transformations above, which determine the field

strengths, arise from the Borel subalgebra of E11 with the exception of the local USp(8).

We believe that also requiring invariance under the local transformations will fix uniquely

the duality relations above.

In the next section we will close the supersymmetry algebra of maximal five-

dimensional supergravity in the democratic formulation, that is including fields and dual

fields. This formulation involves the same forms that were considered in this section, and

we will show that, after field redefinitions, the supersymmetry algebra leads to precisely

the same field strengths and the same gauge transformations as predicted by E11.

3. Supersymmetry algebra of the democratic formulation of D = 5 mass-

less maximal supergravity

In this section we show that the supersymmetry algebra of maximal supergravity in five

dimensions closes on the fields with totally antisymmetric indices predicted by E11. We

also show that the resulting gauge algebra is in precise agreement with the one predicted

by E11 that was analysed in the previous section.

The 42 scalars belong to the non-linear realisation of E6 with local subgroup USp(8).

Taking the generators to be in the the fundamental 27 representation of E6, one can write

the group element as VMij, where the indices i and j are antisymmetrised fundamental

indices of USp(8) while the lower index M denotes the 27 representation of E6, like in the

previous section. The justification for this is that the non-linear realisation is invariant

under V → g0 V h, where g0 ∈ E6 and h ∈ USp(8), and as a result the first index of V

transforms in the fundamental of E6, while the second index transforms under the local

subgroup USp(8). The decomposition of the 27 of E6 under USp(8) gives the 27 of USp(8),

which implies that the scalars satisfy the constraint ΩijVMij = 0, where Ωij is the invariant

metric of USp(8), satisfying

ΩkiΩij = −δk
j . (3.1)
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The inverse scalars are denoted by ṼM
ij , and they satisfy the relations

VMij Ṽ
Nij = δN

M (3.2)

and

VMij Ṽ
Mkl =

1

2

(

δk
i δ

l
j − δl

iδ
k
j

)

− 1

8
ΩijΩ

kl. (3.3)

The USp(8) indices are raised and lowered according to

V i = VjΩ
ji, Vi = ΩijV

j. (3.4)

The other fields in the supergravity multiplet are the vierbein eµ
a, the abelian vectors

AµM in the 27 of E6, the gravitino ψµi and the spinor χijk in the 8 and 48 of USp(8)

respectively. Following [7], we consider the supersymmetry transformations

δeµ
a = −iǭiγaψi

δAµM = 2iVMij ǭ
iψj

µ +
i√
2
VMij ǭkγµχ

ijk

δVMij =
2i√
2
V kl

M ǭkχijl +
2i√
2
V kl

M ǭ[iχj]kl −
i√
2
V kl

m Ωij ǭ
mχklm +

2i√
2
VM [i

kǭlχj]kl

δψµi = Dµǫi +Qµi
jǫj −

1

6
FνρM Ṽ

M
ij γ

νργµǫ
j +

1

3
FµνM Ṽ M

ij γ
νǫj

δχijk =
√

2Pµijklγ
µǫl − 3

2
√

2
FµνM ṼM

[ij γ
µνǫk] −

1

2
√

2
FµνMΩ[ijṼ

M
k]l γ

µνǫl, (3.5)

where

FµνM = 2∂[µAν]M , (3.6)

and Pµ and Qµ are defined by

∇µVMij + VMklP
kl
µ ij = ∂µVMij + 2Qµ[i

kVM |k|j] + VMklP
kl
µ ij = 0. (3.7)

We are only considering the bosonic part of the supersymmetry transformation of the

fermions. This is because we are only interested in the terms at lowest order in the fermions.

We use conventions similar to those of [7], with a mostly minus signature and ǫ01234 = 1.

The antisymmetrised product of gamma matrices satisfies

γµ1...µn = (−)
n(n−1)

2
1

(5 − n)!
ǫµ1...µnνn+1...ν5γ

νn+1...ν5. (3.8)

The transformations of eq. (3.5) where shown in [7] to leave the corresponding action

invariant. We take these transformations as the starting point for our algebraic analysis.

In the bosonic sector, the commutator of two such transformations [δǫ1 , δǫ2 ] closes on all

the local symmetries of the theory, while in the fermionic sector the same algebra closes

only on-shell. We are interested in studying the supersymmetry algebra on the bosons to

lowest order in the fermionic fields. This leads to the corresponding parameters

ξµ = −iǭi2γµǫ1i (3.9)
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for general coordinate transformations, and

ΛM = 2iVMij ǭ
i
2ǫ

j
1 − ξµAµM (3.10)

for gauge transformations.

We now want to generalise this result by introducing dual forms for the bosonic fields

above. We want to close the supersymmetry algebra on these dual fields to lowest order in

the fermions, using the fact that they are related by duality to the bosonic fields already

introduced. The duality conditions are first order equations, which is consistent with the

fact that the supersymmetry algebra only closes when these duality conditions hold. Given

the fact that the fermions transform to the field strengths of the bosonic fields under su-

persymmetry, and that the algebra closes using the duality relations, the supersymmetry

transformations of the fermions are the ones in eq. (3.5) modulo these duality relations.

Each form only transforms with respect to the gauge parameters of lower rank, which means

that the closure of the algebra on each form does not require the knowledge of the transfor-

mations of the forms of higher rank. This resembles the way these gauge transformations

result from E11, as it is clear from the analysis carried out in the previous section.

Proceeding this way, we will determine the supersymmetry and gauge transformations

of the 2-forms, dual to the vectors, and the 3-forms, dual to the scalars. Once these trans-

formations are obtained, one can then determine the 4-forms that supersymmetry allows.

These 4-forms are not propagating, and in the ungauged theory their field-strengths vanish.

We thus determine the number of 4-forms requiring that the supersymmetry algebra closes

using the fact that the field-strengths of these forms vanish. In the next section we will

generalise this result to the gauged case, in which the field-strengths of the 4-forms are

dual to the mass deformations of the theory. One could also determine the 5-forms that su-

persymmetry allows. Although these fields are not propagating and have no field-strength,

they are relevant because they are associated to spacetime-filling branes, that have a crucial

role in orientifold models. We will not determine the 5-forms from supersymmetry in this

section, but appendix A contains the derivation of their gauge transformations from E11.

The method we are using to determine the supersymmetry and gauge transformations

of all the forms is sometimes called democratic formulation of supergravity. In [26] and [27]

this method was applied to IIB and IIA supergravity respectively. It is important to recall

here that the E11 non-linear realisation is automatically democratic, and it was the analysis

in [26] and [27] that revealed for the first time that the 10-forms predicted by E11 in ten

dimensions [24] agree precisely with supersymmetry. At the end of this section we will

compare our results with the results of the previous section, and we will show that the two

perfectly agree.

We start with the 2-forms, and so we close the supersymmetry algebra on the 2-form

BM
µν in the 27 of E6. The algebra closes using the fact that the 2-forms are related to the

1-forms by a duality transformation. It turns out that this uniquely defines the supersym-

metry and gauge transformations of the 2-forms, up to field redefinitions. We use these field

redefinitions to choose a particular form for the gauge transformation of BM
µν with respect

to the parameter ΛM , which we impose to be of the form δBM
µν ∼ ΛNFµν,P d

MNP. This will

be our general procedure for the rest of this section: we choose the gauge transformation

– 19 –



J
H
E
P
0
2
(
2
0
0
8
)
0
3
9

of each field to contain only the field strengths of the lower rank fields, and there are no

derivatives acting on the gauge parameters, with the exception of the leading one. In this

basis the gauge transformations of the fields are gauge invariant.

We write down the most general supersymmetry transformation, we compute the com-

mutator of two such transformations and we impose the closure of the algebra. The final

result is that the supersymmetry transformation of BM
µν is

δBM
µν = 4iṼ M

ij ǭ
iγ[µψ

j
ν] −

i√
2
ṼM

ij ǭkγµνχ
ijk + 2dMNPA[µNδAν]P , (3.11)

where the last term contains the supersymmetry variation of the 1-form. The field strength

of BM
µν is

GM
µνρ = 3∂[µB

M
νρ] + 3dMNPA[µNFνρ]P (3.12)

and it is invariant with respect to the gauge transformations

δAµM = ∂µΛM

δBM
µν = 2∂[µΣM

ν] − dMNPΛNFµνP . (3.13)

The duality between F and G reads

VMijG
M
µνρ =

1

2
ǫµνρστ Ṽ

M
ij F

στ
M . (3.14)

The 1-form gauge parameter generated in the commutator of two supersymmetry

transformations is

ΣM
µ = −2iṼ M

ij ǭ
i
2γµǫ

j
1 + ξνBM

µν − 2idMNPAµNVPij ǭ
i
2ǫ

j
1. (3.15)

Finally, the invariant symmetric tensor dMNP of E6 satisfies

ṼM
kl Ṽ

NklΩij − 4Ṽ M
ik Ṽ

Nk
j + 4Ṽ M

jk Ṽ
Nk

i + 4dMNPVPij = 0, (3.16)

and similarly for the invariant tensor dMNP with downstairs indices satisfies

VMklV
kl
N Ωij − 4VMikV

k
Nj + 4VMjkV

k
N i + 4dMNPṼ

P
ij = 0, (3.17)

which using eq. (3.3) implies

dMNPdMNQ = 5δP
Q. (3.18)

We now move to the 3-forms, which are dual to the scalars. We show that the su-

persymmetry algebra closes on the 3-forms Cα
µνρ, where α = 1, . . . 78 denotes the adjoint

representation of E6, provided that their field strength satisfies a duality condition. The

supersymmetry transformation of the 3-form is

δCα
µνρ = 12iDα

M
N ṼM

(i|k|V
k
N j)ǭ

iγ[µνψ
j
ρ] −

2i√
2
Dα

M
N ṼM

ij VNklǭ
iγµνρχ

jkl

− 2i√
2
Dα

M
N ṼM

kl VNij ǭ
iγµνρχ

jkl +
2i√
2
Dα

M
N ṼM

il V
l
N j ǭkγµνρχ

ijk

+12Dα
M

NBM
[µνδAρ]N −6Dα

M
NA[µNδB

M
νρ] − 24SαP [MN ]A[µMAνNδAρ]P , (3.19)
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where Dα
M

N are the generators of E6 in the 27, satisfying eq. (2.24), and SαP [MN ] is the

invariant tensor introduced in [29] and satisfying eqs. (2.34) and (2.35). The corresponding

field strength,

Hα
µνρσ = 4∂[µC

α
νρσ] − 24Dα

M
NBM

[µνFρσ]N − 8Dα
M

NA[µNG
M
νρσ] (3.20)

is invariant under the gauge transformations

δCα
µνρ = 3∂[µΞα

νρ] + 2Dα
M

NGM
µνρΛN + 12Dα

M
NΣM

[µFνρ]N (3.21)

together with the ones of eq. (3.13). The duality relation between the field strength of

eq. (3.20) and the scalars is

Hα
µνρσ = Dα

M
N ṼMijV kl

N ǫµνρστP
τ
ijkl. (3.22)

We observe that while the 3-forms are in the adjoint of E6, the scalars realise E6 non-

linearly, and therefore their number is adj(E6) − adj(USp(8)). This means that there are

adj(USp(8)) 3-forms whose field strengths are identically zero using the duality relation

of eq. (3.22). This can be seen contracting eq. (3.22) with a suitable combination of the

scalars VMij. This is a completely general phenomenon, and was shown for the first time

in the IIB case in [39]. The 2-form gauge parameter that appears in the supersymmetry

commutator is

Ξα
µν = 4iDα

M
N Ṽ M

(i|k|V
k
Nj)ǭ

i
2γµνǫ

j
1 − ξρCα

µνρ

+8iDα
M

NBM
µνVNij ǭ

i
2ǫ

j
1 − 8iDα

M
NA[µN Ṽ

M
ij ǭ

i
2γν]ǫ

j
1. (3.23)

We finally consider the 4-forms. Although these fields are not dual to any of the

propagating fields of five-dimensional supergravity, we proceed in a way analogous to the

previous cases, writing down the most general supersymmetry transformation and requiring

the closure of the algebra. The fact that we are considering a massless theory implies

that the 5-form field strengths vanish identically because of the duality relations, and this

requirement is crucial to guarantee the closure of the supersymmetry algebra. In the next

section we will see that this duality relation is modified, and the 5-form field strengths will

turn out to be dual to the mass deformation parameters.

Supersymmetry implies that the 4-forms belong to the 351 of E6, which corresponds

to two antisymmetrised upstairs fundamental indices. We therefore denote the 4-forms

with DMN
µνρσ , where the antisymmetrisation of the M and N indices is understood. The

supersymmetry transformation is

δDMN
µνρσ = 16iṼ M

(i|k|Ṽ
Nk

j)ǭ
iγ[µνρψ

j

σ] +
4i√
2
Ṽ

[M
ij Ṽ

N ]
kl ǭ

iγµνρσχ
jkl

−12gαβS
αP [MN ]Cβ

[µνρ
δAσ]P − 4gαβS

αP [MN ]A[µP δC
β

νρσ]

+36B
[M
[µν
δB

N ]
ρσ] − 24gαβS

αP [MN ]Dβ
Q

RA[µPAνRδB
Q
ρσ]

+(48gαβS
αP [MN ]Dβ

Q
R − 72δ

[M
Q dN ]PR)BQ

[µν
AρP δAσ]R

+48gαβS
αP [MN ]Dβ

Q
RdQSTA[µPAνRAρSδAσ]T . (3.24)
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The commutator closes after requiring that the field strength

LMN
µνρστ = 5∂[µD

MN
νρστ ] − 30gαβS

αP [MN ]Cβ
[µνρ

Fστ ]P

−5gαβS
αP [MN ]A[µPH

β
νρστ ] − 60B

[M
[µν
G

N ]
ρστ ] (3.25)

vanishes identically. Gauge invariance of this field strength imposes for DMN
µνρσ the gauge

transformations

δDMN
µνρσ = 4∂[µ∆MN

νρσ] + 18gαβS
αP [MN ]Ξβ

[µν
Fρσ]P

+gαβS
αP [MN ]ΛPH

β
µνρσ + 24Σ

[M
[µ G

N ]
νρσ], (3.26)

and the commutator of two supersymmetry transformations closes on such gauge transfor-

mations. The 3-form gauge parameter arising from the supersymmetry commutator is

∆MN
µνρ = −4iṼ M

(i|k|Ṽ
Nk

j)ǭ
i
2γµνρǫ

j
1 + ξσDMN

µνρσ + 6igαβS
αP [MN ]Cβ

µνρVPij ǭ
i
2ǫ

j
1

+36igαβS
αP [MN ]A[µPD

β
Q

RṼ Q
(i|k|V

k
Rj)ǭ

i
2γνρ]ǫ

j
1 − 36iB

[M
[µν
Ṽ

N ]
ij ǭi2γρ]ǫ

j
1 . (3.27)

We can now compare these results with the ones of the previous section, which were de-

rived using the E11 algebra. The comparison is performed requiring that the field strengths

of eq. (2.55) are the same as the ones of eqs. (3.6), (3.12), (3.20) and (3.25) up to rescaling.

The field-strengths can always be put in the form that was used in this section up to field

redefinitions, so what we can actually check when we do the comparison are the indepen-

dent coefficients in each field-strength. It is straightforward to notice that the 1-forms that

result from E11 can be chosen to coincide with the 1-forms introduced in this section. For

the other fields, this leads to the identifications

AM
µν =

1

4
BM

µν

Aα
µνρ = − 1

72
Cα

µνρ +
1

6
Dα

M
NBM

[µνAρ],N

AMN
µνρσ =

1

1152
DMN

µνρσ +
1

96
Cα

[µνρAσ],P gαβS
βP [MN ]

− 1

16
BQ

[µν
Aρ,PAσ],RgαβD

α
Q

PSβR[MN ]. (3.28)

In particular, once all the possible rescalings of the fields are taken into account, there is

one independent coefficient from Hα
µνρσ and two independent coefficients from LMN

µνρστ . The

fact that these three coefficients match is therefore non-trivial.

Finally, one can compare the gauge transformations, thus identifying the parameters a

of the previous section with the gauge parameters ΛM , ΣM
µ , Ξα

µν and ∆MN
µνρ of this section.

In eq. (2.56) we have identified the parameters a with dΛ, where ΛM , ΛM
µ , Λα

µν and ΛMN
µνρ

are the gauge parameters occurring in the E11 non-linear realisation. It turns out that the

identification of eq. (3.28) is consistent with eq. (2.56), and in particular the parameter

ΛM in that equation coincides with the one introduced in this section, while the other
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parameters are

ΛM
µ =

1

4
ΣM

µ − 1

4
ΛNAµ,P d

MNP

Λα
µν = − 1

72
Ξα

µν − 1

36
Dα

M
NBM

µνΛN +
1

9
Dα

M
NΣM

[µAµ],N

− 1

18
ΛMA[µ,NAν],Pd

MNQDα
Q

P

ΛMN
µνρ =

1

1152
∆MN

µνρ +
1

128
Ξα

[µνAρ],P gαβS
βP [MN ] − 1

64
Σ

[M
[µ B

N ]
νρ]

− 1

32
ΣQ

[µAν,PAρ],RgαβD
α
Q

PSβR[MN ] +
1

1152
ΛPC

α
µνρgαβS

βP [MN ]

+
1

64
BQ

[µν
ΛPAρ],RgαβD

α
Q

PSβR[MN ] +
1

192
BQ

[µν
ΛRAρ],P gαβD

α
Q

PSβR[MN ]

+
1

96
ΛSA[µ,TAν,RAρ],PS

αP [MN ]Dβ
Q

RdQSTgαβ . (3.29)

All these results show that the predictions of E11 are in perfect agreement with the results

obtained imposing the closure of the supersymmetry algebra.

4. Supersymmetry algebra of the democratic formulation of D = 5 gauged

maximal supergravity

In this section we extend the results of the previous one in order to account for all the pos-

sible massive deformations of the five dimensional supergravity theory. We will show that

the supersymmetry algebra of any five-dimensional gauged maximal supergravity admits

a democratic formulation, in which all the bosonic fields with antisymmetric indices are

introduced together with their magnetic duals. This is the first example of a democratic

formulation of a supergravity theory with a non-abelian gauge symmetry, and this result

can be naturally generalised to any gauged maximal supergravity in any dimension.

We use conventions similar to [20], where the complete classification of all the gaugings

of maximal five-dimensional supergravity was found. In sections 5 and 6 we will show how

the gauging arises in E11 independently of the results of this section. We will indeed find

that the non-linear realisation reproduces all the results of this section. In order to make

the analogy between the supergravity and the E11 results more manifest, we use here the

conventions that arise naturally from the E11 perspective. It is for this reason that some

of the conventions are slightly different from ref. [20]. The gauge algebra associated to the

higher rank fields was discussed in an independent bottom-up approach in [38], where the

results of [19, 20] were extended to higher rank forms. Our result therefore shows that

supersymmetry is compatible with this extension.

We first review the results of [20]. In order to describe the gauging of the group

G ⊂ E6, one introduces the embedding tensor ΘM
α so that the generators of G are obtained

from the generators tα of E6 by

XM = ΘM
α t

α. (4.1)

The X’s satisfy the commutation relations
[

XM ,XN
]

= fMN
PX

P , (4.2)
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where fMN
P are the structure constants of the gauge group. From eqs. (4.1) and (4.2) it

follows that

ΘM
α ΘN

β f
αβ

γ = fMN
P ΘP

γ . (4.3)

The embedding tensor is invariant under the gauge group G, and using eq. (4.1) this

corresponds to the condition that the E6 transformation of Θ vanishes when contracted

with Θ. This results in the equation

ΘM
α

(

−fαβ
γΘN

β +Dβ
P

NΘP
γ

)

= 0, (4.4)

and comparing this equation with (4.3) one finds

XMN
P ΘP

α = fMN
P ΘP

α , (4.5)

where XMN
P are given by

XMN
P = ΘM

α D
α
P

N . (4.6)

Eq. (4.5) shows that XMN
P coincides with the structure constant of the gauge group up to

terms that vanish when contracted with the embedding tensor. It can be shown [20] that

such terms are symmetric in M and N , and therefore one can write

X
[MN ]
P = fMN

P , (4.7)

while the symmetric part of X can be written as

X
(MN)
P = −WPQd

QMN, (4.8)

where WMN is antisymmetric and satisfies the conditions

WMNΘN
α = 0 (4.9)

and

XMN
[P WQ]N = 0. (4.10)

Eq. (4.8) defines WMN. The normalisation in eq. (4.8) differs from the one in [20], and it is

chosen because it arises naturally from the E11 analysis, as will become clear in the next

section. The constraints that the embedding tensor satisfies restrict it to belong to the 351

of E6. The same is true for WMN, because the 351 is indeed the irreducible representation

corresponding to two fundamental antisymmetric lower indices of E6. Eq. (4.10) guarantees

that WMN is invariant under the action of the gauge group. The antisymmetric part of

XMN
P is related to WMN by

X
[MN ]
P = −2dMQSdPRTdNQRWST. (4.11)

The scalars, that in the ungauged theory describe the non-linear realisation of E6 with

local subgroup USp(8), are like in the previous section denoted by VMij , antisymmetric

and traceless with respect to the fundamental USp(8) indices i and j. In this notation, the
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gauging of a subgroup of E6 corresponds to a minimal coupling for the scalars VMij, and

taking into account eq. (4.6) one writes the condition

∂µVMij + 2Qµ[i
kVM |k|j] + gXNP

M Aµ,NVPij + VMklP
kl
µ ij = 0. (4.12)

This equation is the covariantisation of eq. (3.7) with respect to the gauge transformation

δVMij = −gXNP
M ΛNVPij (4.13)

of the scalars.

The variation of the scalars under gauge transformations identifies how all the covariant

quantities transform. In particular, a generic covariant object AM with upstairs indices

transforms under the gauge transformation as

δAM = gXNM
P ΛNAP , (4.14)

while an object with downstairs indices transforms according to

δAM = −gXNP
M ΛNAP . (4.15)

For the gauging of a subgroup G of E6 to occur, a subset of the vectors in the 27 of E6

have to collect it the adjoint of G, while the rest of the vectors are gauged away by means

of a Higgs mechanism that gives a mass to the 2-forms. More precisely, one requires that

the gauge transformation of the vector becomes the non-abelian one when contracted with

the embedding tensor. One thus writes the gauge transformation of the vectors as

δAµM = ∂µΛM − gX
[NP ]
M ΛNAµP + gWMNΣN

µ , (4.16)

where ΣM
µ are the gauge parameters of the 2-forms introduced in the previous section.

Contracting eq. (4.16) with ΘM
α , the last term vanishes because of eq. (4.9), and one is left

with the non-abelian gauge transformation of the vector projected by the embedding tensor.

From eq. (4.16) one can write the field strength

FµνM = 2∂[µAν]M + gX
[NP ]
M AµNAνP − gWMNB

N
µν , (4.17)

that is gauge invariant under ΣM
µ transformations at order g. The normalisation of the

last term in eq. (4.16) is chosen in such a way that FµνM varies under ΛM transformations

as in eq. (4.15) at order g. Imposing that F transforms covariantly at order g2 partially

fixes the order g gauge transformation of BM
µν in a way which is consistent with what we

will find in the following. The strategy of ref. [20] was to consider the 2-forms always

contracted with WMN, because WMNB
N
µν is the object that appears in the lagrangian.

They therefore obtain the part of the order g transformations of the 2-forms which does

not vanish when contracted with WMN. As we will see, our analysis instead will determine

the gauge transformations of the 2-forms completely, and we will also determine the full

gauge transformations of the 3-forms dual to the scalars.

In the gauged theory, the supersymmetry transformations of the bosons remains un-

changed, while the transformations of the fermions are modified with respect to eq. (3.5)
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because of two reasons. First of all, one assumes that the field strengths and the covari-

ant derivatives that occur in the supersymmetry transformations of the fermions are now

covariant with respect to the gauge transformations. This means that the field-strength

Fµν,M of the vectors is now defined as in eq. (4.17), and Qµi
j and Pµijkl are now defined

by eq. (4.12). Secondly, explicit mass terms appear in the supersymmetry variation of the

fermions. These terms are obtained requiring that the corresponding action is supersym-

metric, and one can show that the results of [20] can be written in a way that makes the

scalar dependence more explicit. The result is

δ′ψµi =
1

3
gWMNṼ

M
ij Ṽ

Njkγµǫk (4.18)

for the gravitino, and

δ′χijk = 3
√

2gWMNṼ
M
[ij Ṽ

N
k]lǫ

l −
√

2gWMNΩ[ijṼ
M
k]

lṼ N
lmǫ

m (4.19)

for the spinor, where we denote with δ′ the part of the supersymmetry transformations

of the fermions that contain explicit mass terms. Expressing these mass deformations

explicitly in terms of WMN and the scalars will turn out to be crucial in the second part

of this section, where we will close the supersymmetry algebra on the 2-forms and the 3-

forms dual to the vectors and the scalars respectively, and where we will derive the duality

relation between the 5-form field strengths and the mass parameters.

As in the previous section, we are interested in studying the supersymmetry algebra.

Changing the supersymmetry transformations of the fermions results in additional terms

in the commutators of two supersymmetry transformations [δǫ1 , δǫ2 ] on the bosons. In par-

ticular, the commutator of two supersymmetry transformations on the scalars produces the

gauge transformation of eq. (4.13), while on the vectors it produces the gauge transforma-

tion of eq. (4.16), where the parameters ΛM and ΣM
µ are given by eqs. (3.10) and (3.15).

All the assumptions in the above construction, and in particular eqs. (4.14) and (4.15),

are very natural, however the justification for them is that they lead to a supersymmetry

algebra which closes and leads to an invariant action. A more pedagogical but more tech-

nically difficult approach would be to add a single deformation term, like the first term of

order g in eq. (4.16), and demand closure of the supersymmetry algebra by adding terms.

One would then recover the same results.

In the above, we have reviewed ref. [20] showing that the supersymmetry algebra of

five-dimensional gauged maximal supergravity closes on the scalars and the vectors. In the

rest of this section we will show how the supersymmetry algebra closes on the 2-forms dual

to the vectors, and on the 3-forms dual to the scalars. This proves that the supersymmetry

algebra of gauged maximal supergravities admits a democratic formulation, in which all

the fields are introduced together with their magnetic duals and the algebra closes using

the duality relations. As in the previous section, the analysis is carried out at lowest

order in the fermions, and it generalises the results of the previous section to the case of

five-dimensional gauged supergravity.

We start considering the 2-forms BM
µν . We determine the gauge transformation of BM

µν

requiring that the duality condition of eq. (3.14) is gauge invariant. This fixes the gauge
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transformation of the field-strength GM
µνρ to be

δGM
µνρ = gXNM

P ΛNG
P
µνρ. (4.20)

It turns out that this condition determines the gauge transformation of BM
µν and its field

strength uniquely. In order to facilitate the comparison with the E11 results, in this section

we always keep the order of the coupling constant g explicit. This means that we write

the gauge transformations and the field strengths always in terms of the fields and their

derivatives, without using the field-strengths of the lower rank fields, as we did instead in

the previous section. We thus write the final result as

δBM
µν = 2∂[µΣM

ν] − 2dMNPΛN∂[µAν]P − 4

3
gX

[MN ]
P ΣP

[µAν]N

+
2

3
gX

(MN)
P ΣP

[µAν]N − 2

3
gX

[MN ]
P ΛNB

P
µν +

4

3
gX

(MN)
P ΛNB

P
µν

−4

3
gX

(MQ)
R dRNPΛNA[µ,PAν],Q +

2

3
gX

[MQ]
R dRNPΛNA[µ,PAν],Q

+
1

6
gΘM

α Ξα
µν (4.21)

for the gauge variation of the 2-form and

GM
µνρ = 3∂[µB

M
νρ] + 6dMNPA[µN∂νAρ]P + 2gX

[MN ]
P BP

[µνAρ]N

−4gX
(MN)
P BP

[µνAρ]N + 2gX
[NP ]
R dRQMA[µ,NAν,PAρ],Q

−1

6
gΘM

α C
α
µνρ (4.22)

for its field strength. It is important to observe that the 2-form varies with respect to the

parameter Ξα
µν , that is the gauge parameter of the 3-form Cα

µνρ that we introduced in the

previous section, and that this variation contains the embedding tensor. This has to be

compared with eq. (4.16), which shows that the 1-form varies with respect to the gauge

parameter of the 2-form by a term containing WMN. The variation of GM
µνρ at order g

satisfies eq. (4.20), and requiring that this is true also at order g2 partially determines the

gauge transformation of the 3-form in a way that is consistent with what we will find in

the following. The gauge transformation of BM
µν of eq. (4.21) is also consistent with the

covariance of Fµν,M at order g2.

The supersymmetry transformation of BM
µν is given by eq. (3.11), and using the gauged

supersymmetry transformations of the fermions one can show that the supersymmetry

algebra closes on BM
µν , generating the gauge transformation of eq. (4.21) with the correct

parameters given in eqs. (3.10), (3.15) and (3.23), and using the duality relation of eq. (3.14)

where the field strength of the 2-form is as in eq. (4.22). This proves that the gauge

transformations we find are completely consistent with the supersymmetry algebra.

We now consider the 3-forms Cα
µνρ that are dual to the scalars. The duality relation

of eq. (3.22) implies that the gauge transformation of the 4-form field strength Hα
µνρσ is

δHα
µνρσ = gfβα

γΘM
β ΛMH

γ
µνρσ. (4.23)
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Starting from the ungauged result of eq. (3.20), it turn out that imposing eq. (4.23) at

order g completely determines Hα
µνρσ as well as the gauge transformation of the 3-form

Cα
µνρ. The final result is

δCα
µνρ = 3∂[µΞα

νρ] + 6Dα
M

N∂[µB
M
νρ]ΛN + 24Dα

M
NΣM

[µ ∂νAρ]N

+12Dα
M

NdMPQA[µP∂νAρ]QΛN +
[

3gDα
N

PWPM − 9gDα
M

PWPN

]

ΣM
[µB

N
νρ]

−
[

3

4
gfαβ

γΘN
β +

1

4
gDα

P
NΘP

γ

]

ΛNC
γ
µνρ +

[

9

4
gfαβ

γΘN
β − 1

4
gDα

P
NΘP

γ

]

Ξγ

[µν
Aρ]N

+

[

− 3

2
gDα

Q
SXPN

S +
3

2
gDα

Q
SXNP

S − 3

2
gDα

S
NXPS

Q − 1

2
gDα

S
NXSP

Q

−9

2
gDα

S
PXNS

Q − 3

2
gDα

S
PXSN

Q

]

ΛPA[µNB
Q
νρ]

+
[

gDα
M

NXMP
Q + 3gDα

M
NXPM

Q − 9gDα
Q

MXPN
M

]

A[µNAνP ΣQ

ρ]

+
[

−4gDα
MSX

(MQ)
R dRNP + 8gDα

MSX
[MQ]
R dRNP

]

ΛNA[µ,PAν,QAρ],S

+12gDα
M

UWUNS
P [MN ]
β Dβ

Q
RdQSTΛSA[µ,TAν,RAρ],P + gDα

M
PWPN∆MN

µνρ (4.24)

for the gauge transformation of the 3-form and

Hα
µνρσ = 4∂[µC

α
νρσ] − 48Dα

M
NBM

[µν∂ρAσ]N − 24Dα
M

NA[µN∂νB
M
ρσ]

−48Dα
M

NdMPQA[µNAνP∂ρAσ]Q + 18gDα
M

PWPNB
M
[µνB

N
ρσ] + 3gfαβ

γΘN
β A[µNC

γ
νρσ]

+gDα
M

P ΘM
β A[µPC

β
νρσ] +

[

− 18gDα
Q

SX
[PN ]
S − 18gDα

S
NXPS

Q

−6gDα
S

NXSP
Q

]

A[µPAνNB
Q
ρσ]

+12gX
[MN ]
R dRPSDα

S
QA[µ,MAν,NAρ,PAσ],Q − gDα

M
PWPND

MN
µνρσ (4.25)

for its field-strength. Once again, in order to prove gauge covariance it is crucial to impose

that the 3-form transforms with respect to the gauge parameter of the 4-form, as the last

term in eq. (4.24) shows. We also made use of the identity

fαβ
γΘQ

β −Dα
P

QΘP
γ = 4Dα

M
PWPNgβγS

βQ[MN ], (4.26)

which shows that the embedding tensor and WMN are related by the invariant tensor

SαP [MN ], and thus belong to the same representation of E6. Using eq. (2.34) and the

invariance of dMNP one can indeed show that this identity leads to the linear constraint

of [20], which is needed to prove that the embedding tensor belongs to the 351 of E6. The

variation of Cα
µνρ at order g is such that the 3-form field strength GM

µνρ of eq. (4.22) is

covariant at order g2.

The supersymmetry transformation of Cα
µνρ is given in eq. (3.19), and using the gauged

supersymmetry transformations of the fermions one can compute the commutator of two

supersymmetry transformations on this field at lowest order in the fermions. It turns out

that the supersymmetry algebra closes on Cα
µνρ, generating the gauge transformation of

eq. (4.24) where the parameters are as in eqs. (3.10), (3.15), (3.23), and (3.27). Like in the
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massless case, the supersymmetry algebra closes imposing the duality relation of eq. (3.22)

where now the field strength of the 3-form is as in eq. (4.25). Therefore the supersymmetry

algebra of gauged maximal supergravity in five dimensions closes on the 2-forms and the

3-forms dual the non-abelian vectors and the scalars respectively. One could continue

this analysis, and show that the supersymmetry algebra closes on the 4-forms, provided

that their field-strengths are related by duality to the mass deformation parameters of the

gauged theory. We leave this as an open project. As it is clear from the previous results,

in order to determine the gauge transformation of the 4-forms we would need to know how

the 5-forms transform at zeroth order in g. It would be interesting to perform this analysis,

and compare the results with the ones of appendix A, where the gauge transformations of

the 5-forms at zeroth order in g, that is in the massless theory, are computed from E11.

We do not determine the gauge transformation of the 4-forms DMN
µνρσ at order g, and

so we can not determine the 5-form field strengths LMN
µνρστ at order g using them. However,

we can still derive the duality relation of these field strengths with the mass deformation

parameters. The supersymmetry transformation of the 4-forms is given in eq. (3.24).

Using the gauged supersymmetry transformations of the fermions one can compute the

supersymmetry commutator, and from that one can select the term proportional to the

general coordinate transformation parameter given in eq. (3.9). The relevant terms are the

ones that arise from performing the variations of eqs. (4.18) and (4.19) in eq. (3.9). This

results in the contribution

giWPQ

[

8Ṽ
[M
ik Ṽ N ]k

j Ṽ
PjlṼ Q

lm + 8Ṽ
[M
ij Ṽ

N ]
kl Ṽ

PjkṼ Ql
m

+4Ṽ
[M
ij Ṽ

N ]
kl Ṽ

PklṼ Qj
m

]

(

ǭi2γµνρσǫ
m
1 − ǭi1γµνρσǫ

m
2

)

(4.27)

to the supersymmetry commutator on DMN
µνρσ. We have to select out of the terms in

eq. (4.27) the part that is proportional to the general coordinate transformation parameter

given in eq. (3.9), which means that we have to select the part of the fermionic bilinear that

is proportional to Ωim. This term has to produce the general coordinate transformations

of the fields DMN
µνρσ , and for this to occur the duality relation

LMN
µνρστ = gǫµνρστWPQ

[

ṼM
ij Ṽ

N
kl Ṽ

PijṼ Qkl − 2Ṽ M
ik Ṽ

Nk
jṼ

Pi
lṼ

Qlj
]

(4.28)

must hold. Here LMN
µνρστ are the 5-form field-strengths of the gauged theory, transforming

covariantly under gauge transformations and whose zeroth order in g is given in (3.25).

The right-hand side of this duality relation is proportional to the scalar potential of [20].

In the first version of this paper the second term in eq. (4.28) was missing. The fact that

there was something odd in that equation was pointed out in [40]. Taking the curl of the

duality relation of eq. (3.22) and using eq. (4.28) one obtains the second order equation

for the scalars, which means that the scalar potential is encoded in this chain of first order

duality relations. The duality relation of eq. (4.28) follows directly from the terms in the

supersymmetry transformation of the fermions containing explicit mass terms, which are

given in eqs. (4.18) and (4.19). These equations indeed show that WMN should be thought

as the mass deformation parameter, and therefore it is natural to expect that the 5-form

field strength is related to WMN by duality, in agreement with our results.
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To conclude this section, we want to write the gauge transformations of the gauged

theory in terms of the E11 fields and the E11 parameters of section 2. We recall that

from E11 the gauge transformations of the five-dimensional fields in the massless the-

ory are simply obtained acting on the group element of eq. (2.37) with the elements of

eqs. (2.38), (2.40), (2.42) and (2.44) and identifying the E11 parameters a with the gauge

parameters Λ as in eq. (2.56). Performing the redefinitions of the fields and the parameters

given in eq. (3.28) and (3.29) one derives the gauge transformations for the fields in the

massless theory as obtained in the previous section using supersymmetry. In this section we

have shown how these gauge transformations are modified in the gauged theory using su-

persymmetry. The fact that all the transformations are first order in g implies that we can

use the zeroth order field and parameter redefinitions as obtained in the previous section on

these gauge transformations, to derive their form in the E11 basis. This is consistent with

the fact that E11 gives corrections only at order g, as will be shown in the next section.

We thus perform the redefinitions of the fields and the parameters given in eq. (3.28)

and (3.29) on the gauge transformations obtained in this section, in order to the determine

their form in terms of the E11 fields and parameters. We are only interested in the first

order in g, because the E11 analysis of the massless theory, i.e. at zeroth order in g, has

already been performed in section 2. It turns out that performing these redefinitions, the

transformations of eqs. (4.16), (4.21) and (4.24) drastically simplify, and the final result is

δgAµ,M = −gΛP ΘP
αD

α
M

NAµ,N + 4gWMNΛN
µ

δgA
M
µν = gΛP ΘP

αD
α
N

MAN
µν + 2gWNQΛQ

[µd
MNPAν],P − 3gΘM

α Λα
µν

δgA
α
µνρ = −gΛP ΘP

β f
αβ

γA
γ
µνρ + 4gWMPΛP

[µD
α
N

MAN
νρ]

+
2

3
gWMRΛR

[µd
MNQDα

Q
PAν,NAρ],P − 16gDα

M
PWPNΛMN

µνρ, (4.29)

where δg denotes the part of the gauge transformation which is first order in g, and the

full results are recovered adding the zeroth order transformations of eqs. (2.41), (2.43)

and (2.45), where the gauge parameters are given in eq. (2.56). Even the reader who

is unfamiliar with E11 might get the feeling that there is some hidden structure which is

responsible for this drastic simplification. The rest of this paper will be devoted to showing

how the transformations of eq. (4.29) result from E11. Here we just want to conclude

pointing the reader’s attention to the similarity between the gauge transformations of

eq. (4.29) and the E11 transformations of eqs. (2.41), (2.43) and (2.45).

5. Generalised spacetime and the E11 dynamics of gauged supergravities

5.1 Generalised spacetime

When the E11 symmetry was first conjectured [9] the momentum operator Pa was included

in the group element in order to encode space-time into the non-linear realisation. It was

realised that using just this single generator does not respect the E11 symmetry and thus the

momentum operator should be part of some larger multiplet. The correct procedure [31],

found a few years later, is to introduce a set of generators that transform as a linear
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representation of E11 which includes the spacetime translations as its first component. This

representation, denoted l here although l1 in the previous literature, is the fundamental

representation of E11 associated with the node labelled 1. The next components in the

l multiplet in order of increasing level are an anti-symmetric two form Za1a2 , an anti-

symmetric 5-form Za1...a5 , which can be identified with the the central charges in the

eleven dimensional supersymmetry algebra, then Za1...a7,b associated with the Taub-Nut

solution followed by an infinite number of components at higher levels.

The dynamics is specified to be a non-linear realisation based on the semi-direct prod-

uct of the two groups E11 and a group whose elements are those of l, and we write this as

E11 ⊗s l [31]; its precise formulation can be found in [31] and will also be discussed below.

The construction of this non-linear realisation involves a group element that contains the

generators of the Borel sub-algebra of E11, once one has taken account of the local sub-

algebra, and those of l. The coefficients of the latter include xa, the usual coordinate of

space-time but also the coordinates xa1a2 and xa1...a5 corresponding to Za1a2 and Za1...a5

respectively as well as an infinite number of higher level coordinates all of which can be

thought of as constituting a generalised space-time. The group element can be written in

the generic form

g = ex
aPa+xa1a2Za1a2+xa1...a5Za1...a5+...eA·R (5.1)

where R denotes the generators of the Borel sub-algebra of E11 and A are the corresponding

fields that depend in general on the generalised space-time. In the past literature the non-

linear realisation has been constructed keeping only the usual coordinate of space-time xa.

One of the most pressing problems in the understanding of the E11 conjecture has been to

understand the precise role that the generalised space-time plays in the dynamics. In this

section we will show that it plays a central role in the formulation of the dynamics of the

gauged supergravity theories thus providing strong evidence for the role of the l multiplet

in the non-linear realisation and so in M theory.

In fact the l multiplet has a physical interpretation; it is just the multiplet of brane

charges [32]. This is clearly true at the lowest levels where on finds in order of ascending

level the charge of the point particle, the two brane charge, the five brane charge. The

dynamics of a p brane is described by an action which contains a Wess-Zumino term whose

leading term is a coupling between a rank p+ 1 gauge field which is one of the non-trivial

background fields and a conserved current. This current has a corresponding charge which

is the brane charge and to which the gauge field couples. As such one expects every field

in the E11 non-linear realisation to have a corresponding charge in the l multiplet. Indeed

this is the case [32]; the fields in the non-linear realisation are in one to one correspondence

with the generators of the Borel sub-algebra of E11 and if one deletes any of the space-time

from any one of these generators one finds an element in the l representation that has the

resulting structure of space-time indices. From this view point introducing the generalised

coordinates corresponds to using coordinates for measuring space-time using all possible

branes and not just those associated with the point particle.

As explained above by choosing different AD−1, or SL(D,R) sub-algebras of E11 one

identifies different gravity lines and so theories in different dimensions. In this construction
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one automatically finds the duality groups long known to be symmetries of the correspond-

ing maximal supergravity theories, for example E7 in four dimensions [1] and SL(2,R) for

IIB supergravity [2]. Technically this construction corresponds to decomposing the adjoint

representation of E11 into those of AD−1 direct product with the duality group. The gen-

erators of E11, and so the fields, with totally anti-symmetric indices in the D dimensions

were only rather recently computed. It was found that they lead to a totally democratic

formulation of the propagating forms together with some forms that have D − 1 and D

indices. The former correspond to the gauged supergravities constructed and one finds a

precise match [29, 30] with the pattern of gauged supergravities derived using supersym-

metry over very many years. Thus one finds that E11 provides a unified framework for all

the maximal supergravity theories many of which had no higher dimensional origin within

the context of traditional supergravity theories.

When considering the non-linear realisation E11 ⊗s l one must also carry out the de-

composition of the l multiplet AD−1 direct product with the duality group as well as that

for the adjoint representation of E11 in order to determine the theory that results in D

dimensions. In fact this calculation was carried out a few years ago [33, 34] and the re-

sults for the members of the multiplet that are forms, that is possess just a set of totally

antisymmetrised indices, are summarised in table 1 [33, 34]. Comparing with the set of

generators of E11 table 5 of reference [29] one sees the above discussed correspondence

between charges and fields. The results can be compared with earlier calculations [35] that

assumed U duality symmetries and used the known U duality transformation rules to com-

pute some of the multiplets of brane charges from a known brane charge. It was observed

that the resulting brane charges were generically more numerous than the central charges

in the corresponding supersymmetry and that many of the charges had a rather exotic

structure that did not arise from a reduction of an eleven or ten dimensional supergravity

theory. The decomposition of the l multiplet gives precise agreement with these results

as can be seen at a glance by comparing the results of table 1 with tables 4.11 and 4.14

of the third paper in reference [35]. Furthermore, the l multiplet provides a single unify-

ing structure for all the charges found in lower dimensions many of which have no higher

dimensional origin within the context of traditional supergravity theories. Thus there is

substantial evidence for the relevance of the l multiplet in M theory, however, not so far

for the generalised space-time that results from it in the non-linear realisation. It is the

purpose of this section to rectify this short coming.

As table 1 shows the members of the l multiplet in five dimensions, classified according

to E6 multiplets and in order of increasing rank of the totally anti-symmetrised space-time

indices, are given by [33]

Pa, Z
N , Za

N , Z
a1a2α, Za1a2 , Za1a2a3

NM , Za1a2a3N , . . . (5.2)

As their indices imply these transform according to the 1, 27, 27, adjoint i.e. 78, 351 and

27 of E6 respectively. As already discussed there is a relation between the members of

the l multiplet and the fields in the adjoint representation of E11, namely if one deletes a

spacetime index from the latter one finds a corresponding charge in the former.
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D G Z Za Za1a2 Za1...a3 Za1...a4 Za1...a5 Za1...a6

8 SL(3,R) × SL(2,R) (3,2) (3,1) (1,2) (3,1) (3,2)

(8,1) (6,2)

(1,3) (3,2)

(1,1) (3,2)

7 SL(5,R) 10 5 5 10

24 40

15

1 10

6 SO(5, 5) 16 10 16
45 144

1 16

5 E6(+6) 27 27
78 351

1 27

4 E7(+7) 56
133 912

1 56

3 E8(+8) 248

3875

248

1

Table 1: Table giving the representations of the symmetry group G of the form charges in the l

multiplet up to and including rank D − 2 in D dimensions, in 8 dimensions and below [33, 34].

It is instructive to derive the low level members of the l multiplet in five dimensions

from that in eleven dimensions. In eleven dimensions the l multiplet has the following

content [31]

Pâ;Z
â1â2 ;Z â1...â5 ;Z â1...â7,b, Z â1...â8 ;Z â1...â8,b̂1 b̂2b̂3 , Z â1...â9,(b̂ĉ), Z â1...â9,b̂1b̂2 ,

Z â1...â10,b̂, Z â1...â11 ;Z â1...â9,b̂1...̂b4,ĉ, Z â1...â8,b̂1...̂b6 , Z â1...â9,b̂1...̂b5 , . . .

where â = 1, . . . , 11. To find the content of the five dimensional theory we split the indices

range of â etc into â = a, a = 1, . . . , 5 and â = i + 5, a = 6, . . . , 11. The latter transform

under SL(6). If we consider scalars we find at low levels Pi, Z
ij, Zi1...i5 which are the 6, 15

and 6 representations of SL(6,R). These collect up into the 27 of E6, i.e. ZN . For one form

elements one finds Zai, Zaii...i4 , Zaii...i6,j which belong to the 6, 15 and 6 representations of

SL(6,R) which collect up into the 27 representation of E6 i.e Za
N . For the two form we find

Zab(1), Zabi1...i3(20), Zabi1...i5,j(35 ⊕ 1), Zabi1...i6(1), Zab,i1...i3(20), Zabi1...i6,j1...j6(1) (5.3)

where the number in brackets is the SL(6,R) representation. All these package up into

the 78 ⊕ 1 of E6, i.e. Za1a2α and Za1a2 . The latter charge is the Taub-Nut charge and

will play no role in what follows. As such we set it to zero.

This demonstrates how the space-time generators Pi which occur in the dimensional

reduction of conventional supergravity theories are augmented by the higher members of the

l multiplet to form E6 multiplets. In what follows we will see how part of these multiplets

play a crucial role in the construction of the gauged supergravity theories.
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We now define in more detail what we mean by the semi-direct product E11⊗s l where l

is an algebra whose generators are in one to one relation with the l multiplet. By definition

the commutation relations between the generators R of E11 and Z of l are specified by to

be of the form

[R,Z] = U(R)Z (5.4)

where U(R) is the action of the generator R on the generators Z viewed as a representation

of E11. Applying this to the E6 sub-algebra we find the commutators

[Rα, Pa] = 0,
[

Rα, ZM
]

= ZN (Dα)N
M , [Rα, Za

N ] = −(Dα)N
MZa

M

(5.5)

[Rα, Za1a2α] = fαβ
γZ

a1a2γ ,
[

Rα, Za1a2a3
NM

]

= −(Dα)N
RZa1a2a3

RM − (Dα)M
RZa1a2a3

NR . (5.6)

One can readily verify that these commutators do satisfy the Jacobi identities found by

taking the commutator with another generator of E6.

The commutators of E11 with the space-time translations can only be of the form
[

RaN , Pb

]

= δa
bZ

N ,
[

Ra1a2
N , Pb

]

= 2δ
[a1

b Z
a2]
N , (5.7)

[Ra1a2a3α, Pb] = 3δ
[a1

b Za2a3]α,
[

Ra1a2a3a4
MN , Pb

]

= 4δ
[a1

b Z
a2a3a4]
MN . (5.8)

The coefficients on the right-hand side are chosen as above and this fixes the normalisation

of the generators that appear on this side of the commutation relations.

Since all the elements of the l representation can be obtained by taking the commu-

tators of the E11 generators with Pa, the commutators of the remaining generators of E11

with those of the l representation can found by using the Jacobi identities in conjunction

with equations (5.5), (5.6), (5.7) and (5.8) as well as E11 commutators themselves of equa-

tions (2.22), (2.23) and (2.25)–(2.31). In particular, the Jacobi identity involving Pa, R
bM

and RcN implies the relation
[

RaM , ZN
]

= −dMNPZa
P . (5.9)

Similarly one finds that
[

RaM , Zb
N

]

= −(Dα)N
MZabα,

[

Ra1a2
M , ZN

]

= −(Dα)M
NZa1a2α, (5.10)

[

Ra1a2
M , Za3

N

]

= Za1a2a3
MN ,

[

Ra1M , Za2a3α
]

= −SαM [RS]Za1a2a3
RS , (5.11)

[

Ra1a2a3α, ZM
]

= −SαM [RS]Za1a2a3
RS . (5.12)

5.2 The map from E11 into generalised spacetime

Essential for the construction of the dynamics of the gauged supergravities is the observa-

tion that there generically exists a linear map denoted Ψ from E11 into the l representation

which possesses the following four properties (we will give the discussion such that it is

valid in any dimension before implementing it in detail for the five dimensional case):

A Let us denote the image of this map to be k, i.e. Ψ(E11) = k. As k is part of the

representation l of E11 it inherits an action of E11 on it. While this will not always

act on elements of k so as to remain in k we demand that the subspace k does carry

the adjoint representation of a sub-algebra F11 of E11.
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B We demand that the map Ψ be invariant under the action of F11, that is

Ψ(U(T )R) = U(T )Ψ(R) (5.13)

where U(T ) is the action of the generator T ∈ F11 on the appropriate space and R is

any generator of E11.

C The map Ψ preserves the space-time nature of the fields, that is the action of the map

does not change the number of Lorentz indices the element carries.

D The sub-algebra F11 is contained in the Borel sub-algebra of E11 together with all of

G, the internal symmetry algebra which is E6 for the case of five dimensions.

We now analyse the consequences of these requirements. Let us label the generic elements

of k and F11 by V and T respectively. Since the adjoint representation of any group is

unique it follows from A that the map Ψ identifies the subspace k of l in a one to one

manner with the sub-algebra F11 of E11 in a way that is preserved by (requirement B) the

action of F11. To be more precise given any T1 ∈ F11 it acts on any T ∈ F11 according to

the adjoint representation as T1 → [T1, T ] while on k the element T1 acts as V → U(T1)V .

Given a labeling of the elements of F11 we may use the correspondence that Ψ provides to

similarly label the elements of k. Indeed, we have a one to one correspondence between

V ∈ k and T ∈ F11 given by Ψ(T ) = V such that

U(T1)V = U(T1)Ψ(T ) = Ψ(U(T1)T ) = Ψ([T1, T ]) (5.14)

for any T1 ∈ F11. It follows that the map Ψ induces a map, denoted Ψ̃, of E11 into itself

whose image is the sub-algebra F11 on which it is the identity map.

If we decompose the adjoint representation of E11 into representations of F11 then the

map Ψ identifies the sub-algebra F11 with the subspace k of l as described above and maps

to zero all the other representations in E11. Similarly if we decompose the representation

l of E11 into representations of F11 then only the adjoint representation of F11 is in the

image of Ψ and all the other representations are in the complement of k. We may write

E11 = F11 ⊕ F⊥
11 and l = k ⊕ k⊥ (5.15)

where F⊥
11 contains all the representations of F11 contained in E11 other than the adjoint

and similarly for k⊥. Then Ψ maps as Ψ(F11) = k and Ψ(F⊥
11) = 0. We will label the generic

elements of E11 and L as R and l, those of F11 and k as T and V , as was done above, and

those of F⊥
11 and k⊥ as S and U respectively. Clearly, F11 acts on F⊥

11 to give F⊥
11 and on k⊥

to give k⊥. Also the action of F⊥
11 on F11 and k must contain all of F⊥

11 and k⊥ respectively

as both the adjoint representation of E11 and the representation l are irreducible.

Requirement C means that the map Ψ preserves the sub-algebra of E11 associated

with gravity, that is A4 in the case of five dimensions, and so it maps a generator of E11

with a given set of space-time indices to an element of k with the same set of space-time

indices or if it is inside F⊥
11 to zero. As a result, it is useful to subdivide all the above
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spaces according to the number of space-time indices their elements possess and indicate

this with a suitable superscript, for example E
(0)
11 = E6, l

(0) = {ZN} for five dimensions.

In this paper we will adopt requirement D, but given that the map Ψ can be non-zero

on parts of the Borel sub-algebra of E6 it natural to expect that F11 could include other

negative root generators with non-trivial Lorentz indices.

Clearly, to find such a map one must find elements of E11 and l that have the same

Lorentz index structure. Examining the formulation of E11 suitable to eleven dimensions,

that is with an A10 sub-algebra, of equation (2.1) and that of the l mentioned at the

beginning of this section we find that at low levels there are no such objects and so no

map Ψ is possible. However, once one considers lower dimensions one finds that there

are matching elements in E11 and l and that a map with all the above properties can be

constructed. We now concentrate on the case of five dimensions, but it is straightforward

to generalise these considerations to other dimensions.

We will now construct such a map from the E11 generators of equation (2.21) into the

elements of l of equation (5.2). Using requirement C and the fact that there is only one

object in l with any space-time indices that are lowered, namely Pa, but no such objects

in the Borel sub-algebra of E11, it follows that Pa must be in k⊥. Hence, we may write

k(−1)⊥ = {Pa}. For the elements with no space-time indices we have a map from E
(0)
11 = E6

to l(0) = {ZN}, the 27 representation of E6, and we define the elements of F 0
11 and k(0) to

be given by

F
(0)
11 =

{

TN : TN = ΘN
α R

α
}

, k(0) =
{

V N
}

(5.16)

respectively, the elements TN and V N of the two subspaces being in the one to one

correspondence

Ψ
(

ΘN
α R

α
)

= V N . (5.17)

Here ΘN
α is a constant tensor which enters the theory as the definition of the map Ψ on the

space of elements with no space-time indices, i.e. F
(0)
11 . In fact, the TN cannot be linearly

independent as this would imply that the V N were also linearly independent and so would

span all of l(0), it rather describes the way F
(0)
11 is embedded in E6. The complement is

given by

F
(0)⊥
11 =

{

S ∈ E
(0)
11 :

(

S,ΘN
α R

α
)

= 0
}

(5.18)

If we write S = cαR
α the orthogonality conditions it implies that ΘN

α c
α = 0 where

cα = gαβcβ, and gαβ is the Cartan-Killing metric.

We can now find the restrictions placed on ΘM
α by the above requirements. Taking

the commutator of two elements of F
(0)
11 , namely TM = ΘM

α R
α and TN = ΘN

α R
α and

demanding that F
(0)
11 is a sub-algebra (requirement A) with structure constants fMN

P ,

implies that

[

TM , TN
]

=
[

ΘM
α R

α,ΘN
β R

β
]

= ΘM
α ΘN

β f
αβ

γR
γ = fMN

PT
P = fMN

P ΘP
γ R

γ (5.19)

and so we conclude that

ΘM
α ΘN

β f
αβ

γ = fMN
P ΘN

γ . (5.20)
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On the other hand demanding that the map Ψ is invariant under F
(0)
11 transformations

when acting on F
(0)
11 (requirement B) we find, using equations (5.5), (5.14) and (5.19), that

Ψ
(

U
(

TM
)

TN
)

= Ψ
([

TM , TN
])

= Ψ
(

fMN
PT

P
)

(5.21)

= U
(

TM
)

Ψ
(

TN
)

=U
(

TM
)

V N=ΘM
α V

P
(

Dα
)

P
N=XMN

P Ψ
(

TP
)

(5.22)

where we recall that by definition XMN
P = ΘM

α (Dα)P
N . Hence, we find that

fMN
P ΘP

γ = XMN
P ΘP

γ (5.23)

In deriving this equation we have taken V N to transform under F
(0)
11 like ZN . This is

because V N can be obtained from the ZN ’s by a projection in which the leading term is ZN .

Let us now turn to the construction of the map Ψ on elements with one upper space-

time index, that is the map Ψ from E
(1)
11 = {RaN} into the space l(1) = {Za

N}. It maps the

27 into the 27 representation of E6. We define this map by requiring the elements of F
(1)
11

and k(1) to be given by

F
(1)
11 = {T a

M : T a
M = WMNR

aN}, k(1) = {V a
M} (5.24)

where the elements are in one to one correspondence

Ψ
(

WMNR
aN
)

= V a
M . (5.25)

The constant tensor WNM which defines the map is required to be an anti-symmetric tensor.

We find the complement of F
(1)
11 to be

F
(1)⊥
11 =

{

SaN ∈ E
(1)
11 : WMNS

aN = 0
}

(5.26)

where SaN = LN
PR

aP , with constant LN
P ’s, are a set of generators that are not linearly

independent. They are in the orthogonal subspace in the sense that (T, S) =
∑

N T a
NS

bN =

0 and LN
P can be viewed as projectors.

We can find the spaces k(0) and k(0)⊥ by acting with F
(1)
11 on Pa the lowest component

of the l multiplet. Using equation (5.7), we note that for T a
M ∈ F

(1)
11 we find that

[T a
M , Pb] =

[

WMNR
aN , Pb

]

= δa
bWMNZ

N (5.27)

while if SaN ∈ F
(1)⊥
11 then

[

SaN , Pb

]

= δa
bV

N , (5.28)

We note that WMNV
N = 0 since WMNS

aN = 0. Since the action of F11 on k⊥ must lie in

k⊥ and the action of F
(1)
11 and F

(1)⊥
11 on the Pa must lead to all of l(0), we find that

k(0) =
{

V N ∈ l(0) : WMNV
N = 0

}

and k(0)⊥ =
{

UM : UM = WMNZ
N
}

. (5.29)

Examining equation (5.17) and using the relation WMNV
N = 0 we conclude that

Ψ(WMNθ
N
α R

α) = 0 and so

WMNθ
N
α = 0. (5.30)
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Taking the commutator of an element of F
(0)
11 , namely TN = ΘN

α R
α and an element of

F
(1)
11 , namely T a

M = WMPR
aP , and demanding that they form a closed algebra (requirement

A) we find that

[

TN , T a
M

]

= ΘN
α WMP

[

Rα, RaP
]

= ΘN
α WMP(Dα)S

PRaS = −XNP
M T a

P (5.31)

provided

XNP
[S WM ]P = 0. (5.32)

Since the algebra F11 is generated by F
(0)
11 and F

(1)
11 and we have already specified the

map for these two spaces, F11 is completely determined once one takes into account the

requirements A, B, C and D. It only remains to find the consequences for the constant

tensors ΘN
α and WMN and the form of the spaces F11 and k for the higher rank generators.

Indeed, at the next level we find, using equation (5.30), that the commutator of two

elements of F
(1)
11 is given by

[

T a
N , T

b
M

]

= WNPWMQd
NPQRab

Q = −WNPX
(NQ)
M Rab

Q = −3

2
WNP(Dα)M

PT ab
α (5.33)

where

T ab
α =

1

3
ΘS

αR
ab
S (5.34)

and provided

−WNPd
PQS = X

(QS)
N . (5.35)

Taking another commutator with an element of F
(1)
11 one finds

[

T a
N , T

bc
α

]

=
1

3
WNPΘS

α(Dβ)S
PRabc

β =
2

3
ΘS

αT
abc
NS (5.36)

where

T a1a2a3
NM = W[N |P (Dα)M ]

PRa1a2a3
α . (5.37)

Hence we conclude that

F
(2)
11 =

{

T ab
α : T ab

α =
1

3
ΘS

αR
ab
S

}

(5.38)

while

F
(3)
11 =

{

T a1a2a3
NM : T a1a2a3

NM = W[N |P (Dα)M ]
PRa1a2a3α

}

. (5.39)

It is straightforward to find the corresponding spaces in k⊥. Taking the commutator

of T ab
α of equation (5.34) with Pc, and using equation (5.7), we find that

[

T ab
α , Pc

]

=
2

3
δ[ac S

b]
α where Sb

α = ΘN
α Z

b
N (5.40)

while the commutator of T a1a2a3
NM with Pc gives

[

T a1a2a3
NM , Pc

]

= 3δ[a1
c S

a2a3]
NM where Sab

NM = W[N |P (Dα)M ]
PZab

α (5.41)

As a result we conclude that

k(1)⊥ =
{

Sb
α : Sb

α = ΘN
α Z

b
N

}

and k(2)⊥ =
{

Sab
NM : Sab

NM = W[N |P (Dα)M ]
PZab

α

}

(5.42)
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It is instructive to carry out the F11 transformations on k⊥ and see how it transforms into

itself.

To ensure that the map Ψ satisfies requirement B is more involved. For example,

requiring the invariance of the map Ψ under F
(1)
11 transformations acting on F

(0)
11 we also

find, using equations (5.9) and (5.31), that

Ψ
(

U(T a
N )TM

)

= Ψ
([

T a
N , T

M
])

= Ψ
(

XMP
N T a

P

)

(5.43)

= XMP
N Ψ(T a

P ) = U(T a
N )Ψ(TN ) = U(T a

N )V N . (5.44)

However, to evaluate this last equation requires us to know how T a
N acts on k(0). In principle

we know how to evaluate this as we know the action of E11 on l, but to find a concrete

expression requires us to be able to project from l(0) to k(0) not only in principle, but in

practice. It is very likely that this will lead to the constraint of equation (5.35).

The same pattern occurs at higher levels, and one can compute what the action of

F
(0)
11 on k is using the invariance, but to derive the required identity one requires a detailed

knowledge of the projector. It would be good to work this out in detail and also investigate

precisely what kind of sub-algebra F11 is. In doing this one should recover all the higher

identities on ΘN
α and WMN in addition to the ones found above.

5.3 Field transformations and the dynamics of gauged

supergravities

In this section we will show how the non-linear realisation based on E11 ⊗s l does lead to

the precise dynamics of the gauged supergravities. As we will see an essential role is played

in this calculation by the higher level coordinates contained in the l representation.

In this construction of the dynamics an important role is played by a sub-algebra

formed from E11 and l. The map Ψ described in the above provides an identification of a

sub-algebra F11 of E11 with sub-space of the l representation which we wrote as Ψ(T ) = V .

The sub-algebra of interest is found by adding together the generators which are identified

by the map, that is we consider the combinations

Y = V + gT, explicity Y N = V N + gTN , Y a
M = V a

M + gT a
M , T

ab
α = V ab

α + gT ab
α , . . . (5.45)

where g is a constant that will eventually become the coupling constant associated

with the gauged supergravity. The explicit expressions for the T ’s are given in equa-

tions (5.16), (5.24), (5.34) and (5.37).

In order to compute the commutators of the Y generators we need those between the

T and V generators. According to equation (5.4), and using the invariance condition of Ψ

of equation (5.14), we find that

[T1, V2] = U(T1)V2 = U(T1)Ψ(T2) = Ψ(U(T1)T2) (5.46)

= Ψ([T1, T2]) = Ψ
(

f12
3T3

)

= f12
3V3 (5.47)

where Vi = Ψ(Ti), i = 1, 2, 3 and [T1, T2] = f12
3T3. Using this relations it is straightforward

to calculate the commutators of two Y generators. The result is

[Y1, Y2] = [V1, V2] + g[T1, V2] − g[T2, V1] + g2[T1, T2] (5.48)

= [V1, V2] + 2gf12
3V3 + g2f12

3T3 = gf12
3Y3 (5.49)
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provided that one assumes that

[V1, V2] = −gf12
3V3. (5.50)

Thus the generators Y also obey the algebra T11, but with the structure constants rescaled

by g, provided we assume the generators V satisfy the same algebra, but with a structure

constant rescaled by −g. We will discuss the significance of this commutator of two V ’s

later. At the lowest level we find, using equations (5.27) and (5.31), that

[

Y N , YM
]

= gfNM
PY

P ,
[

Y N , Y a
M

]

= −gXNP
M Y a

P , . . . (5.51)

Using equations (5.47) and (5.50) it is easy to also show that

[V1, Y2] = 0, [T1, Y2] = f12
3Y3, (5.52)

Starting from a general group element of E11 ⊗s l we take the local sub-algebra to be

such that the group element can be brought into the form

g = ez·Uey·Y eA(z)·R (5.53)

where we recall that U ∈ k⊥, Y = V + gT , V ∈ k, T ∈ F11 and R ∈ E11. More explicitly

ez·U = ex
aPaez

N SN ez
N
a Sa

N . . . (5.54)

ey·Y = eyN(V N+gT N)ey
N
a (V a

N+gT a
N) . . . (5.55)

where the coordinates of the generalised space-time are denoted by z = (xa, zN , . . . ) and

y = (yN , y
N
a , . . .). The only y dependence of the group element g is via the generators Y ,

that form a closed algebra. This is essential for insuring that there is no y dependence in

the final equations. In the expression eA(z)·R the fields A now depend on the z coordinates.

The above form of the group element differs from the most general one in that it involves

only generators from the Borel sub-algebra of E11 and the fields in the last factor only

depend on z and not on both z and y. As a result the local transformations must involve

those of the Cartan involution invariant sub-algebra as usual, but in addition y dependent

Borel sub-algebra transformations. We will discuss this later. In fact we will only retain

the xa coordinate from all the z coordinates, but it is useful to retain the more general

expression for the day when we understand what to do with the higher z coordinates.

One can rewrite the group element g by moving the factors of eg y·T in Y through the

group element so that all the generators of E11 appear in the order listed in g before the

deformation. That is in order of generators of decreasing rank. Once this has been done

one can interpret the result as taking a fields A to depend generally on z, but in a special

way on y.

The Cartan forms are given by

g−1dg = dZ · E · L+ dz ·G ·R+ dy ·G · R (5.56)

where L = (U, V ) are all the generators of l and Z = (z, y) are the corresponding coordi-

nates and

dz ·G ·R = e−A(z)·RdeA(z)·R, dy ·G ·R = e−A(z)·Rgdy · e · TeA(z)·R (5.57)
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dZ · E · L = e−A(z)·R
(

e−y·Y dz · Sey·Y + dy · e · V
)

eA(z)·R. (5.58)

In deriving this equation we have used the fact that e is the group vierbein corresponding

to the algebra F11, namely

e−y·Y dey·Y = dy · e · Y. (5.59)

The quantity dz ·G ·R is just the usual expression for the Cartan forms in the absence

of a deformation. The first such forms were given in equation (2.47) if we replace the x

dependence by that of z. The quantity dy · G · R are the E11 valued Cartan forms which

are in the y direction. Examining the above expression we find it is of the form

dz ·G ·R+ dy ·G ·R = (dz, dy) ·
(

I 0

0 e

)

G ·R (5.60)

where

dy · G ·R = e−A(z)·Rdy · TeA(z)·R (5.61)

is independent of y. It is straightforward to compute the first few Cartan forms using the

E11 commutation relations given earlier in the paper. We find that

GN
,α = gΘN

α , (5.62)

GN
,aM = gAaPX

NP
M , GN M

,a1a2
= gAP

a1a2
XNM

p − g

2
A[a1|QAa2]RX

NR
S dSQM, . . . (5.63)

while

Gb
N ,α = 0, Gb

N ,aM = gδb
aWNM, Gb

N
R
,a1a2

= gδb
[a1
Aa2]PWNMd

MPR. (5.64)

The vierbein E of the non-linear realisation is the coefficient of the l generators in the

Cartan form of equation (5.56) and it is of the form

dZ ·E = dZ ·
(

I 0

0 e

)

E (5.65)

where

dZ · E · L = e−A(z)·RdZ · LeA(z)·R (5.66)

where dZ = (dz, dy). We observe that E is independent of y. We observe that the inverse

quantity is given by

dZ · E−1 · L = eA(z)·RdZ · Le−A(z)·R (5.67)

The first few inverse vierbein components are readily calculated using equation (5.67)

and the commutators of equations (5.1.8-13) and are given by

E−1
a
µ = δµ

a , E−1
aN = AaN , E−1

a
N
b = 2AN

ab −
1

2
A[a|MAb]Sd

SMN, . . . (5.68)

while

E−1N
M = δN

M , E−1N = · · · . . . , E−1a
N

M
b = δa

b δ
M
N . (5.69)
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The above expressions for the Cartan forms and vierbeins omit the fact that they

appear multiplied by g−1
φ on the left and gφ on the right. The effect of this is just to find

the above quantities but multiplied by factors of VMij and ṼM
ij as described below eq. (2.47).

The Cartan form g−1dg is invariant under rigid transformations g0 of E11 ⊗s l which

are of the form g → g0g, but does transform under local transformations, g → gh where h

is in the local subgroup as g−1dg → h−1g−1dgh+h−1dh. As such, the only global transfor-

mations on G arise from the global transformations on dZ and, as the full Cartan form is

invariant, the corresponding transformations induced on the first index on G. As such this

first index is a world index in the sense that it transforms under coordinate transformations

induced by the global transformations. To construct the dynamics one normally makes this

index flat using the inverse vierbein E−1 of the non-linear realisation and then the result-

ing object Ĝ is inert under the global transformations and just transforms under the local

sub-algebra. By definition the dynamics is the set of equations which is invariant under the

rigid g → g0g and the local g → gh transformations. Hence, if we construct the dynamics

only from Ĝ then we need only find equations invariant under the local transformations as

invariance under global transformations is automatic. We note that in our case

Ĝ = E−1G = E−1G (5.70)

where the matrix E−1 is understood to act on the world index of G. Clearly, if the dynamics

is constructed from the flat Ĝ’s then it will be independent of the y coordinates. However,

in the case of interest to us here, that is the dynamics of the gauged supergravities, this is

not quite the case as we will explain below. The flat Ĝ’s will require some correction terms,

nonetheless the dynamics will be independent of the y coordinates as one is adding correc-

tions to terms to the flat Ĝ’s, which are y independent, as a result of demanding invariance

under y independent transformations. Consequently, although the y coordinates play a key

role in formulating the dynamical equations they are not present in the final result.

Using the expression for the Cartan forms of equations (5.3.16-7) and the inverse

vierbein of equations (5.3.21-2) it is easy to evaluate the Ĝ; the first one being given by

ĜaαR
α = Ea

µGµαR
α + EaNGN,αR

α = g−1
φ (δµ

a∂µ + gΘN
α R

αAaN )gφ. (5.71)

We recognise this expression as the Cartan form associated with the non-linear realisation

E6 with USp(8) local sub-algebra with a term, proportional to a deformation parameter g,

which describes the coupling of the scalars to the gauge fields ΘN
α AaNR

α. Consequently, we

find that the gauge group of the non-linearly realised theory has the generators ΘN
α R

α = TN

which we recognise as those of the algebra F
(0)
11 . Following the same arguments it is

straightforward to show that

Ĝa,bM = δµ
a∂µAbM + gAaNAbPX

NP
M + 2gAN

ab −
1

2
gAaTAbSd

STNWNM. (5.72)

We will now calculate the rigid transformations of the deformed theory by starting

with the group element g of E11⊗s l and carrying out the rigid transformations g → g0g for

g0 ∈ E11 ⊗s l. We begin by considering transformations which belong to k. These can be
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written as g0 = eb·V and In carrying out this calculation we will encounter the expression

eb·V ey·Y which, using equations (5.52), we may process as

eb·V ey·Y = eb·V +y·Y = e(y+b)·Y −gb·T = ey
′·V e−gb·T (5.73)

where

ey
′·V =

∏

n

e
− n

(n+1)!
g(y·Y )n∧b·Y

e(y+b)·Y . (5.74)

In carrying out this manoeuvre we have used the equation

eAeB =
∏

n

e
− n

(n+1)!
An∧B

eA+B (5.75)

valid for any A and B, but only to lowest order in B. We recall that A ∧ B = [A,B] and

A2 ∧B = [A, [A,B]] etc. Carrying out a k transformation in the non-linear realisation we

find that

g0g = eb·V ez·Uey·Y eA(z)·R = ez·Uey
′·Y e−gb·T eA(z)·R. (5.76)

Thus the net effect of a rigid k transformation is to change y, and to lead to the E11 transfor-

mation e−gb·T on the E11 fields. However, as the dynamics is independent of y we need only

work out the consequences of the latter transformation in eq. (5.76). We have assumed that

passing eb·V through ez·U leads only to changes in z and y which are irrelevant. At the lowest

level we find that taking g0 = ebN V N
induces theE11 transformation e−gbN T N

= e−gbNΘN
α Rα

,

while taking g0 = eb
N
a V a

N induces the E11 transformation e−gbN
a T a

N = e−gbN
a WNMRaM

, tak-

ing eb
α
a1a2

V
a1a2
α induces the E11 transformation e−gbα

a1a2
T

a1a2
α = e−

g
3
bα
a1a2

ΘN
α R

a1a2
N and taking

eb
MN
a1a2a3

V
a1a2a3
MN induces the E11 transformation e−gbMN

a1a2a3
T

a1a2a3
MN = e−gbMN

a1a2a3
Dα

M
P WPNR

a1a2a3
α .

Using equations (2.8) and (2.9) we find that acting with g0 = ebN V N
the fields

transform as

δAaN = −gbSXSM
N AaM , δAN

a1a2
= gbSX

SN
M AM

a1a2
(5.77)

δAα
a1a2a3

= −gbSΘS
βf

αβ
γA

γ
a1a2a3

, (5.78)

while if we take g0 = eb
N
a V a

N this results in the transformations of the form of eq. (2.45)

with parameter aaM = −gbNa WNM. Similarly, acting with g0 = e−gbα
a1a2

V
a1a2
α generates

the transformations of the form of eq. (2.43) with parameter aN
a1a2

= − g
3b

α
a1a2

ΘN
α , and

acting with g0 = eb
MN
a1a2a3

V
a1a2a3
MN generates the transformations of the form of eq. (2.41)

with parameter aα
a1a2a3

= −gbMN
a1a2a3

Dα
M

PWPN.

One can also carry out rigid k⊥ transformations which is of the form g0 = ec·U . Clearly,

taking g0 = ec
aPa will only result in the change xa → xa + ca, that is the usual space-time

translations. The higher generators of k⊥ will lead to changes in z and possibly y. However,

the coordinates y do not appear in the dynamics and in this paper we will only take the

lowest coordinate xa of the z’s. As such, these transformations are irrelevant for the terms

computed in this paper.

Now let us carry out a rigid E11 transformation of the form g0 = ea·R. This gives

g0g = ea·Rez·Uey·Y eA(z)·R = e(z·U+[a·R,z·U ])e(y·Y +[a·R,y·Y ])ea·ReA(z)·R. (5.79)
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The final factor of ea·R leads to the same rigid transformations on the E11 fields that we

found in section 2 for the massless theory. The commutator [a ·R, y ·Y ] leads to generators

of l and E11. However, these results in either changes to z and y or additions to the

E11 fields A(z) that are y dependent. Such latter terms do not maintain the form of the

group element which must be brought back to the same form using local y dependent

transformations. For the reasons given above we can in effect forget about these terms.

On the other hand the commutator [a · R, z · U ] lies in l and so it contributes to changes

in z and y. In the latter case we must rewrite the generators of k in terms of those of the

generators Y = V + gT to find the change in y’s and as a result we find additional E11

generators whose effect must be evaluated. Since we are only keeping the coordinates xa

from all the z coordinates, we only have the factor

ex
cPc+[a·R,xcPc]. (5.80)

It is most easy to explain how to process this term by studying the simplest case from

which the general procedure will become apparent. As such taking g0 = eaaN RaN
, we find

that the factor of equation (5.80) is equal to

ex
cPcex

cacN V N

(5.81)

where we have thrown away the part of ZN that belongs to k⊥ and taken [Pc, V
N ] = 0.

The net result is a rigid k transformation with parameter xcacN . Following our discussion

above for such transformations we find that acting with g0 = eaaN RaN
leads to a group

element of the form

ex
cPcey

′·Y e−gxcacN T N

eaaN RaN

eA(x)·R (5.82)

which can be evaluated using the E11 commutators as we did for the massless theory. A

similar calculation taking g0 = ea
N
a1a2

R
a1a2
N , g0 = ea

α
a1a2a3

R
a1a2a3
α and g0 = ea

MN
a1...a4

R
a1...a4
MN

leads to effective k transformations with k parameters 2xcaN
ca, 3xcaα

ca1a2
and 4xcaMN

ca1...a3
.

Examining equation (5.81) we conclude that a rigid E11 transformations results in the x

independent transformations of the massless theory as well as x dependent transformations

that can be interpreted as effective k transformations. As such we can account for the latter

transformations by replacing the x independent parameters b of the k transformations by

b(x) where

bN (x) = bN + xcacN , bNa (x) = bNa + 2xcaN
ca, (5.83)

bαa1a2
(x) = bαa1a2

+ 3xcaα
ca1a2

, bMN
a1a2a3

(x) = bMN
a1a2a3

+ 4xcaMN
ca1...a3

. . . (5.84)

Thus the rigid transformations of E11 ⊗s l lead to the same rigid transformations of the

massless theory as well as k transformations that have the x dependent parameters of

equation (5.84).
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The resulting E11 ⊗s l transformations of the the E11 fields are given by

δAaN = ∂abN (x) − gbS(x)XSM
N AaM + gWMPb

P
a (x) , (5.85)

δAN
a1a2

=
1

2
∂[a1

bNa2](x) +
1

2
∂[a1

bS(x)Aa2]Td
STN + gbS(x)XSN

M AM
a1a2

+
1

2
WSPb

P
[a1

(x)Aa2]Td
STN − 1

3
gbαa1a2

(x)ΘN
α , (5.86)

δAα
a1a2a3

=
1

3
∂[a1

bαa2a3](x) + ∂[a1
bM (x)AN

a2a3]D
α
N

M

+
1

6
∂[a1

bM (x)Aa2,NAa3],Pd
MNQDα

Q
P − gbP (x)ΘP

β f
αβ

γA
γ
a1a2a3

+gWMPb
P
[a1

(x)Dα
N

MAN
a2a3] +

1

6
gWMRb

R
[a1

(x)dMNQDα
Q

PAa2,NAa3],P

−gDα
M

PWPNb
MN
a1a2a3

(x), (5.87)

where we have used the identities

∂abN (x) = aaN
1

2
∂[a1

bNa2](x) = aN
a1a2

(5.88)

1

3
∂[a1

bαa2a3](x) = aα
a1a2a3

1

4
∂[a1

bMN
a2a3a4](x) = aMN

a1...a4
(5.89)

to rewrite the transformations that are the same as in the massless theory.

The transformations of equations (5.85) to (5.87) uniquely determine the corresponding

invariant field strengths as they are both only first order in derivatives. These are obtained

adding the order g corrections to the field strengths of eq. (2.55) of the massless theory.

The results is

Fa1a2,M = 2∂[a1
Aa2],M + gX

[NP ]
M A[a1,NAa2],P − 4gWMNA

N
a1a2

(5.90)

FM
a1a2a3

= 3∂[a1
AM

a2a3] +
3

2
∂[a1

Aa2,NAa3],Pd
MNP − 6gX

(MN)
P AP

[a1a2
Aa3],N

+
1

2
gX

[NP ]
R dRQMA[a1,NAa2,PA[a3],Q + 3gΘM

α Aα
a1a2a3

(5.91)

Fα
a1...a4

= 4∂[a1
Aα

a2...a4] −
2

3
∂[a1

Aa2,MAa3,NAa4],Pd
MNQDα

Q
P − 4∂[a1

AM
a2a3

Aa4],ND
α
M

N(5.92)

+4gDα
M

P ΘM
β A[a1,PA

β

a2...a4]+16gDα
M

PWPNA
MN
a1...a4

−4gDα
M

PWPNA
M
[a1a2

AN
a3a4]

−4gDα
M

PX
(MR)
Q A[a1,PAa2,RA

Q

a3a4]−
1

6
gX

[MN ]
R dRPSDα

S
QA[a1,MAa2,NAa3,PAa4],Q.

Requiring the closure of E11 with the conformal group has the net effect of promoting

the parameters b(x) to be arbitrary functions of x. Given that b(x) contain the term x · a
in eq. (5.84), the identification a = dΛ in eq. (2.56) gives the normalisation of b(x) in terms

of Λ as

ΛM = bM (x) ΛM
a =

1

4
bMa (x) Λα

a1a2
=

1

9
bαa1a2

(x) ΛMN
a1a2a3

=
1

16
bMN
a1a2a3

(x). (5.93)

Substituting this into the transformations of eqs. (5.85), (5.86) and (5.87) we find

δAaN = ∂aΛN − gΛSX
SM
N AaM + 4gWMPΛP

a , (5.94)
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δAN
a1a2

= 2∂[a1
ΛN

a2] +
1

2
∂[a1

ΛSAa2]Td
STN + gbS(x)XSN

M AM
a1a2

+2WSPΛP
[a1
Aa2]Td

STN − 3gΛα
a1a2

ΘN
α , (5.95)

δAα
a1a2a3

= 3∂[a1
Λα

a2a3] + ∂[a1
ΛMA

N
a2a3]D

α
N

M

+
1

6
∂[a1

ΛMAa2,NAa3],Pd
MNQDα

Q
P − gΛP ΘP

β f
αβ

γA
γ
a1a2a3

+4gWMPΛP
[a1
Dα

N
MAN

a2a3] +
2

3
gWMRΛR

[a1
dMNQDα

Q
PAa2,NAa3],P

−16gDα
M

PWPNΛMN
a1a2a3

. (5.96)

We can now compare the field strengths and gauge transformations obtained here with

those found from supersymmetry in section 4. To do this, we carry out the field redefinitions

and the corresponding redefinitions of parameters of eqs. (3.28) and (3.29), both of which

are determined completely from the massless theory. We find complete agreement, and

in particular one can check that the order g terms in eqs. (5.3.44-46) are identical to the

order g transformations found from supersymmetry and reformulated in terms of the E11

fields and parameters in eq. (4.29). The relation of eq. (3.29) between the gauge parameters

obtained from supersymmetry and the E11 parameters Λ has been carried out in such a way

that the variation of the field An is in both cases of the form δAn = n∂Λn−1. This ensures

that the parameters are normalised in the required way. All the remaining coefficients in

eqs. (5.3.44-46) are then determined independently by both calculations, thus giving 12

independent checks.

As noted above, since the transformations from k involve only part of the l multiplet,

the corresponding generators satisfy constraints and as a result the associated parameters

have an ambiguity. For example, as WMNV
N = 0 the parameter bN is ambiguous up to

bN → bN +WMNc
N for any constants cN . Examining the transformations of equation (5.85)

to (5.87) we indeed see that such ambiguities do not affect the transformations of the fields

as a result of identities such as that of equation (5.26).

The unique equations which are invariant under the transformations of the non-linear

realisation above and are Lorentz and USp(8) covariant are of the form of eq. (2.57). The

result is

VMijF
M
abc =

1

8
ǫabcdeṼ

M
ij F

de
M VMijṼ

N
kl F

α
abcd =

1

72
Dα

M
Nǫabcde(g

−1
φ ∂egφ)ijkl, (5.97)

which is the same as eqs. (3.14) and (3.22). The non-linear realisation also possesses

local transformations associated with the Cartan involution invariant subalgebra. The

transformations above, which determine the field strengths, arise from the Borel subalgebra

of E11 with the exception of the local USp(8). We believe that also requiring invariance

under the local transformations will fix uniquely the duality relations above, including the

coefficients in eq. (5.97).

We conjecture that the duality relation between the field strength of the 4-forms and

the mass deformation parameters arise from equating the Cartan form in the xa direction

proportional to Ra1...a4
MN and the Cartan form Gb

M,aN = gWMNδ
b
a in equation (5.64), in the
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yM
b direction and proportional to Ra,N . This leads to the duality relation

VMijVNklF
MN
abcde =

1

5760
ǫabcde

[

ṼM
ij Ṽ

N
kl − 2Ṽ M

[i|mṼ
Nm

[kΩj]l]

]

Ga
M,aN

=
1

1152
gǫabcdeWMN

[

ṼM
ij Ṽ

N
kl − 2ṼM

[i|mṼ
Nm

[kΩj]l]

]

, (5.98)

which is equal to the duality relation of eq. (4.28) that was obtained imposing the closure

of the supersymmetry algebra. The overall coefficient and the USp(8) structure of the

terms are fixed from eq. (4.28), but requiring that the Cartan form transforms correctly

under the full local subalgebra will fix this duality relation uniquely and independently of

the supersymmetry result. Thus we find that the non-linear realisation of E11 ⊗s l does

indeed correctly account for the dynamics of the gauged supergravities. It is important to

note that the k part of the l multiplet, that is some of the generalised coordinates, play

an essential role. The above calculations artificially truncated the remaining part of the l

multiplet and it would be very interesting to find out what is the effect of these additional

coordinates. Some considerations on this can be found in reference [36].

In the usual non-linear realisations of E11 ⊗s l an extension to include the closure

with the conformal group has been used. This had the virtue of making local all the global

transformation of E11, the rigid parameter being the part of the local gauge transformation

that is linear in x. However, as already mentioned, for the above case we found that the

rigid parameters of E11 combined with the k transformations into a parameter which has

a constant and a linear term in x. Combining with the conformal group would add all the

higher x dependent terms of a completely local transformation.

Using a non-linear realisation in which part of the l multiplet of generators plays a

non-trivial role leads to additional rigid transformations corresponding to the part of the

l multiplet that is non-trivial, i.e. k. As we have seen these combine with the induced

x dependent E11 transformations to form a set of parameters that has a term which is

constant and one that is linear in x. This parameter does not occur in the massless

theory where one only has the constant E11 parameters which once one closes with the

conformal group becomes replaced by local gauge parameters which contain the constant

E11 parameter as the term linear in x. The transformations of the fields then only contain

the derivative of the gauge parameter. The situation in the deformed theory is different

in that the closure with the conformal group will lead to local (gauge) parameters which

have a constant part that contains the parameters of k transformations and a part that is

linear in x which contains the E11 parameters. However, the transformations of the fields

contain not only the derivative of the gauge parameter, but also the gauge parameter itself.

Indeed the presence of these latter terms can be viewed as a consequence of the existence

of a non-trivial role for some of the generalised coordinates.

Comparing the field strengths of equations (5.94) with the “flat” Cartan forms of

equation (5.72) we see that they have the required from but the numerical coefficients are

not quite the same. In fact the expression of equation (5.72) is not quite invariant under

the rigid transformations. This is in contrast with the Cartan form of equation (5.71),

which is invariant. The problem is that the form of the group element, and so the Cartan
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forms, has been fixed using the local symmetries and having made a rigid transformation

one must make a compensating local transformation. However, such a local compensating

transformation does not leave the “flat” Cartan forms invariant and in particular this is

the case for the local transformations which are y dependent. Taking this into account one

recovers invariant expressions that are in agreement with the ones mentioned above and

derived by using the explicit transformations of the fields. In the general procedure to find

the dynamics from the non-linear realisation using the “flat” Cartan forms the final step is

to find expressions which are invariant under the local transformations which automatically

include any local compensating transformations. As such following this procedure will also

lead to the same result as we found using the explicit variations of the fields.

Essential for the derivation of the dynamics of the gauged supergravities was the choice

of group element of equation (5.53). This can be obtained from the most general group

element by taking a sufficiently large local sub-algebra. The most general group element

differs from that of equation (5.53) only in that the fields A are functions of z and y and

not only z. The local sub-algebra must contain local transformations that belong to the

Cartan involution invariant subgroup of E11 that depend in an arbitrary way on z and y.

However, we must also have local transformations that belong to the Borel sub-algebra of

E11 that depend on z but not in an arbitrary way on y so as to leave the group element

in the desired form. We note that for the case of no dimensional reduction we have a local

sub-algebra that has only the Cartan involution invariant subgroup of E11 which depend

in an arbitrary way on z and y. While for the dimensional reduction on a torus we have

ΘN
α = 0 and so there are no y coordinates. It would be good to understand in more detail

the local subgroup and the precise way in which it is local given that we have two sets of

coordinates and so the meaning of local is more subtle that the usual case.

We have made no attempt in this paper to discuss what happens to the dependence

of the fields on the z coordinates other than the very lowest one which is that of the usual

description of space-time. As suggested in [36], it could be that these may lead to more

propagating degrees of freedom. This is perhaps the most important unanswered question

in the non-linear realisation of E11 ⊗s l.

Another aspect of the above discussion that requires further thought is the commu-

tator between the V N ’s of equation (5.50). While the commutators of the generators of

E11 are unmodified regardless of what theory one is discussing, the commutators of the

generators of k part of the generalised space-time appear to change if one is discussing a

gauged theory as opposed to a the massless theory and from one gauged theory to another.

To understand what is going on it is useful to consider gravity and its formulation as a

non-linear realisation. This is the non-linear realisation of SL(D,R) closed with the con-

formal group. Of course the resulting theory is Einstein’s general relativity with a possible

cosmological constant and so has no preferred background. However, the intermediate step

using first only SL(D,R), or alternatively the conformal group, is linked to Minkowski

space, or equivalently the Poincare algebra, but when the two are combined one has a

background independent formulation. However, as the final result is general relativity with

a possible cosmological term it also possesses anti-de Sitter space as a solution. Indeed,

one can instead start with an anti-de Sitter algebra which has non-commuting space-time
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translations to form Lorentz transformations rather than the commuting relations of the

Poincare algebra and enlarging this to include SL(D,R) and closing with the conformal

group. One finds that the vierbein becomes redefined to incorporate that of anti-de Sitter

space and Einstein’s general relativity is again the result. The isometries of anti-de Sitter

space emerge from the formulation based on the Poincare group as the space-time trans-

lations corrected by higher generators that enter when one considers the closure with the

conformal group. Similarly in the case being considered here although the algebra of the

k generators seems to depend on the gauged supergravity being considered the result after

one completes the non-linear realisation will be equivalent in the same sense.

In reference [29] a first adhoc attempt to account for the dynamics of gauged su-

pergravities using a non-linear realisation based on E11 but also including the space-time

translation operator Pa was given. The commutator of Pa with generators of E11 was taken

to lead to another generator of E11 and the Jacobi identities were used to find these commu-

tators given the lowest one between RaN and Pb which was given by [RaN , Pb] = δa
b ΘN

α R
α

where ΘN
α are constants. As noted in that paper this was only correct when viewed form a

suitable perspective. A similar adhoc approach was taken when deriving the massive IIA

supergravity theory as a non-linear realisation [23] and in this case one recovers the correct

theory with all the required terms using this method.

However, when the generalised space-time was introduced in reference [31] the com-

mutator between generators in E11 and the l multiplet was taken to be a member of the l

multiplet with a structure constant that is determined using the fact that the l multiplet

is a representation of E11. This is the case in the construction used in this paper i.e. equa-

tions (5.4)- (5.12). There is however a relationship between the two approaches which is

most easily seen by examining equation (5.28) which is a commutator between an element

of F
(1)⊥
11 and Pa which results in an element of k(0). This particular element is identified

with the map Ψ with the element ΘN
α R

α of F
(0)
11 which is the result in the alternative

approach. This is indeed the general pattern and one can recover the commutators of the

adhoc approach from those of the correct approach of this paper in this way. We note

that the relationship between the two approaches only applies to the commutator of the

generators of F⊥
11 and not all those of E11. Indeed, if one tries to use it more generally as

was noticed in [29] the Jacobi identities are not satisfied in the adhoc approach while they

are guaranteed in the approach of this paper. The Romans theory can also be constructed

using the approach of this paper and similar comments hold for this construction and the

adhoc approach of reference [23].

It was observed [29] that one could find the relations satisfied by ΘN
α and WMN in the

adhoc approach by using the Jacobi identities on a suitable set of generators. This can be

recovered from the correct approach of this paper. The commutator of an element S ∈ F⊥
11

with U ∈ k⊥ is an element V ∈ k, i.e. generically [S,U ] = V . As the map Ψ is a one to

one map from F11 onto k, Ψ−1 is also a one to one onto map in the other direction. We

note that

[T,Ψ−1([S, V ])] = Ψ−1([T, [S, V ]) = −Ψ−1([S, [V, T ]]) − Ψ−1([V, [T, S]]) (5.99)

using the fact that the map Ψ is invariant and so also is its inverse. Taking T = ΘN
α R

α,
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S = SaM and V = Pa we do indeed find the constraint of equation (5.23). Taking other

choices of generator one can find the other constraints. This is to be expected as one is

using the invariance of Ψ which leads to the constraints in the method of this paper.

6. An explicit example and the physical meaning of the map Ψ

In order to make the constructions in this paper more concrete we consider an explicit

example that is well known, namely the gauged supergravity that arises from the IIB

supergravity theories dimensionally reduced on a five sphere with gauge group SO(6). In

doing so the physical meaning of the the subspaces F11, k and their complements will

become readily apparent and seen to apply to any gauging.

We first recall the generators of E11 labeled according to the preferred SL(10,R) algebra

that leads to the IIB theory [12, 24];

K â
b̂
, R0, R+, Râ1â2α, Râ1...â4 , Râ1...â6α, Râ1...â7,b̂, Râ1...â8(αβ), Râ1...â10α, Râ1...â10(αβγ), . . .

(6.1)

where â, b̂ = 1, . . . , 10 and R−, R0 and R+ are the generators of the manifest SL(2,R) of

the IIB theory whose locally realised SO(2) subgroup is given by R+ −R−. We denote the

indices of the vector representation of SL(2,R) by α, β = 1, 2. The l multiplet for the IIB

theory is given by [41]

Pâ, Z
âα, Z â1...â3 , Z â1...â5α, Z â1...â6,b̂, Z â1...â7 , Z â1...â7(αβ), Z â1...â9α, Z â1...â9(αβγ), . . . (6.2)

We note that if we delete a space-time index from the generators of E11 of equation (6.1)

we find those of the l multiplet in equation (6.2) as expected.

It is instructive to first examine how the E11 generators and members of the l multiplet

of the five dimensional theory arise form these multiplets in the IIB the dimensional theory

given in equations (6.1) and (6.2). To find this we split the indices range of â etc into

â = a, a = 1, . . . , 5 and â = i+ 5, a = 6, . . . , 10. The i, j indices transform under SL(5,R)

in an obvious way.

The E6 internal symmetry group in five dimensions comes from the E11 generators Ki
j ,

R−, R0, R+, Rijα, Ri1...i4 where i, j = 1, . . . , 5 as well as the negative root generators Rijα,

Ri1...i4 . The maximal compact, or equivalently Cartan involution invariant, subgroup of

SL(5,R) is SO(5) which are just the Lorentz transformations in the upper five dimensions.

Under this SO(5) the generators Ki
j decompose to K(ij) and K [ij], which are the 10 and

5 representations, the latter being just the Lorentz generators. The decomposition of the

other fields is obvious. The local USp(8) symmetry consists of the 36 generators K [ij], R−,

Rijα − Rijα and Ri1...i4 − Ri1...i4 . The remaining generators of E6 lead in the non-linear

realisation to the 42 scalars of the theory.

The 1-form E11 generators in the five dimensional theory are easily seen from equa-

tion (6.1) to be given by

Ka
i(5,1), Raiα(5,2), Rai1...i3(10,1), Rai1...a5α(1,2), (6.3)
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which make up the 27 of E6 that is RaN . The numbers in brackets denote the SL(5,R) ⊗
SL(2,R) representations. The 2-form E11 generators are easily seen to be given by

Ra1a2α(1,2), Ra1a2ij(10,1), Ra1a2...a5i1...i4α(5,2), Ra1a2...a5i1...i5j(5,1) (6.4)

which is the 27 of E6 i.e. Ra1a2
N .

Examining equation (6.2) we find the Lorentz scalar members of the l multiplet are

given by

Pi(5,1), Ziα(5,2), Zijk(10,1), Zi1...i5α(1,2) (6.5)

which make up the 27 of E6 i.eZN , while the one forms are given by

Zaα(1,2), Zaij(10,1), Zai1...i4,α(5,2), Zai1...i5,α(5,1) (6.6)

which make up the 27 of E6, i.e. Za
N .

The supergravity with gauge group SO(6) has a cosmological constant resulting from a

non-zero field strength for the 4-form gauge field Aa1...a4 . This is the self-dual field strength

of the IIB theory and this is an SL(2,R) singlet the gauge group SO(6) commutes with the

manifest SL(2,R) symmetry of the IIB theory in ten dimensions. We will have to reorganise

all the above fields into representations of SO(6) ⊗ SL(2,R). This is straightforward once

one realises that the this SO(6) has an SO(5) sub-algebra that is just the Lorentz transfor-

mations in the upper five dimensions and so the Cartan involution invariant sub-algebra

of SL(5,R). Since all the above generators transform under SL(5)⊗ SL(2) we just perform

the decomposition of the generators under the first factor to SO(5) and then reconstitute

the resulting generators into those of SO(6) ⊗ SL(2,R).

To find the gauged supergravity of interest we must take F
(0)
11 = SO(6) as the gauge

algebra is just F
(0)
11 . As such, in this case, F

(0)
11 only contains the 15 of SO(6) out of all

the SO(6) representations in the adjoint (78) of E6. We note the the 78 of E6 decomposes

into the (1,3) ⊕ (20,2) ⊕ (35,1) of SL(6,R) ⊗ SL(2,R). In fact the (35,1) decomposes

under SO(6) ⊗ Sl(2,R) to contain the (20,1) and the (15,1) and it is the latter which

is the adjoint of SO(6). Examining the E11 generators that lead to E6 we find that the

SO(6) algebra consists of the generators F
(0)
11 = {K [ij], Ri1...i4 − Ri1...i4} which belong to

the (10,1) and (5,1) of SO(5) ⊗ SL(2,R) respectively.

The map Ψ maps F
(0)
11 = SO(6) to a (15,1) of l(0) which can only consist of the

SL(2,R) invariant generators in equation (6.5) and so

k(0) =
{

Pi, Z
ijk
}

(6.7)

which are the (5,1) and (10,1) of SO(5)⊗ SL(2,R) and so indeed belong to the (15,1) of

SO(6) ⊗ SL(2,R). The complement contains the generators k(0)⊥ = {Ziα, Zi1...i5α} which

belong to the (5,2) and (1,2) of SO(5) ⊗ SL(2,R) and so the (6,2) of SO(6) ⊗ SL(2,R).

We recall that k(0)⊥ consists of the objects WMNZ
N and as this is the same projector

that defines F
(1)
11 we conclude that this latter space is also the (6,2) of SO(6) ⊗ SL(2,R)

and so is given by

F
(1)
11 =

{

Raiα, Rai1...a5α
}

. (6.8)
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As a result the complementary space belongs to the (15,1) of SO(6) ⊗ SL(2,R) and is

given by

F
(1)⊥
11 =

{

Ka
i, R

ai1...i3
}

. (6.9)

We note that Ψ maps F
(1)
11 to k(1) and so this and its complementary space are given by

k(1) =
{

Zaα, Zai1...i4,α
}

and k(1)⊥ =
{

Zaij , Zai1...i5,α
}

(6.10)

which belong to the (6,2) and (15,1) of SO(6) ⊗ SL(2,R) respectively.

By carrying out the commutators of generators of F
(1)
11 with themselves we find that

F
(2)
11 = {Ra1a2ij , Ra1a2i1...a5,j} (6.11)

which belongs to the (15,1) of SO(6)⊗SL(2,R), while the commutators of F
(1)
11 with F

(1)⊥
11

imply that

F
(2)⊥
11 = {Ra1a2α, Ra1a2i1...a4α} (6.12)

which belongs to the (6,2) of SO(6) ⊗ SL(2,R).

We now comment on the physical meaning of the above spaces. As we have mentioned

F
(0)
11 is just the gauge group and it included the SO(5) Lorentz rotations in the upper five

dimensions as well as transformations that originate from a four index generator in the

upper directions. The subspace k of the l multiplet contains the generators that lead to

the coordinates which are active in the gauged theory. At the lowest level these are in

the adjoint representation of the gauged group representation and the generators are given

in equation (6.7). These consist of the space-time generators of the internal space Pi and

the Zijk. The corresponding coordinates are yi and the yijk. The former are those of

space-time and can be thought of as belonging to the coset SO(6)/SO(5), while the latter

belong to SO(5). Thus we see that even in this case of gauged supergravity, which unlike

most cases is obtainable from a conventional super gravity by dimensional reduction, the

techniques of this paper adds extra coordinates which make more manifest the underlying

gauge symmetry.

At the next level we find in E11 the 1-form generators which are in one to one cor-

respondence with the vector fields of the theory. In particular, the generators in F
(1)⊥
11

correspond to the vectors that form the Yang-Mills theory with gauge group SO(6) while

those in F
(1)
11 correspond to vectors in the (6,2) of SO(6) ⊗ SL(2,R). The latter can be

eaten by the 2-forms whose associated generators are in F
(2)⊥
11 . The 2-forms associated

with F
(2)
11 can then be eaten by the 3-forms etc. The eating process is apparent from the

transformations of equations (5.91)–(5.93) where one finds that the projectors that define

F
(n)
11 occur acting on the naked gauge parameter of rank n. For example, we find in δAaN

the term 4gWNMΛM
a and so we may gauge away the 1-forms in the space projected by

WNM, that is those in F
(1)
11 . Similarly in δAN

a1a2
there occurs the term −3gΘM

α Λα
a1a2

imply-

ing that we may gauge away the 2-forms associated with F
(2)
11 etc. This would leave just

the fields associated with F
(n)⊥
11 . It is simple to understand why this is the case for any

gauging. The generators in k lead to rigid transformations that can be identified with the

space-time independent part of the gauge transformation. As such the k transformations
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can be identified with the gauge parameters that appear in naked form, that is without

space-time derivatives. When this occurs in the variation of a field we can gauge it away.

However, the map Ψ identifies k with F11 and so it is the fields associated with the latter

that can be gauged away.

The active coordinates can also be given a physical meaning. The 1-form fields which

are physical are those associated with the generators in F
(1)⊥
11 of equation (6.8). They couple

to the point particle and the D3 brane as seen from ten dimensions. The corresponding

charges are just found by looking in the l multiplet for an object with one less space-

time index and they are in this case found in k(0) of equation (6.7). The corresponding

coordinates are just the scalar coordinates that are active as this is the role of k(0) in

the group element of the non-linear realisation. This is very natural as it means that the

generalised space-time used in this paper includes just the coordinates corresponding to

the branes which are active. We find the analogous relations between the fields associated

with F
(2)⊥
11 , the branes to which they couple and their corresponding coordinates in k(1).

It is then not surprising that the generators in k obey equation (5.50) as this is just the

algebra expected for the brane charges.

One can map all the fields and coordinates of the IIB theory to the eleven dimensional

theory just using the fact that the underlying E11 symmetry is unique [12, 25]. One

finds that the 4-form field Aa1a2a3a4 , a1, a2 . . . = 1, . . . 9 responsible for the SO(6) gauge

field gets mapped over to Aa1...a210 11 which is part of the six form field. This corrects the

statement made by the authors in reference [29]. The mistake made was to assume that the

SO(6) gauge symmetry was related to the gravity SL(6,R) symmetry which occurs on the

reduction from eleven dimensions to five dimensions. This error is most readily apparent

when one considers the way the preferred gravity sub-algebras of the eleven and IIB theory

occur in the E11 Dynkin diagram and the fact that the SO(6) symmetry commutes with

the manifest SL(2,R) symmetry of the IIB theory.

Clearly, D− 1 forms that arise from the compactification of E11 fields that are beyond

the traditional fields of supergravity lead to massive theories that can not be found by usual

geometric compactification procedures on traditional supergravities. An example of this is

the IIA theory of Romans, whose mass parameter is dual to a 9-form that arises from the

eleven-dimensional field Aa1...a10,(bc). However, as the five-dimensional case examined in

this section shows, the gauged SO(6) theory, when seen as arising from eleven dimensions,

involves the 6-form which is a traditional field of eleven dimensional supergravity. However

this does not lead to a geometric interpretation from eleven dimensions as a non-vanishing

7-form field strength does not admit an decomposition in terms of invariant objects in five

dimensions. Thus the notion of geometric compactification is more restrictive.

7. Conclusions

In this paper we have derived the fields, transformations and dynamics of all the five

dimensional gauged supergravities from a formulation based on E11 and separately by

viewing it as a traditional supergravity and using its local supersymmetry algebra. The

results are in precise agreement providing a very precise check of the E11 programme. The
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five dimensional case was selected for this test as it shares with the lower dimensional cases

a very rich group structure, but it also possesses all the main duality features involving

fields of higher rank of the supergravities in higher dimensions.

The E11 formulation has a field content of form fields, that is fields with one set of

totally antisymmetrised indices, which is democratic that is for a physical degree of freedom

of the theory described by a p form we also find its dual field that is a 5 − p − 2 form.

Thus the scalars are dual to 3-forms, the vectors to 2-forms and we also have form fields

of rank 4 and 5, which are not dual to any physical degree of freedom of the system but

lead to the gauged supergravities and space-filling branes respectively. In section 2 we

derived the E11 transformation of these fields for the ungauged theory that is the massless

maximal supergravity theory and so arrived at the gauge transformation of these fields.

The dynamics is given by equating the field strength of a gauge field to that of its dual

using the ǫ symbol with the field strength for the 4-form gauge field being zero. In section

3 we showed that the supersymmetry algebra closes precisely when one adds the form fields

predicted by E11 and that the gauge transformations this requires are in precise agreement.

The rest of the paper concerned the gauged supergravity theories. In section 4 we

deformed the supersymmetry algebra to find all the possible gauged supergravities in the

framework of the democratic formulation. This formulation is particularly suited to incor-

porating the dynamics of the gauged supergravities in that the dynamics is of almost the

same structure as the ungauged case except that the field strengths now contain additional

terms and the five form field strength is dual to the mass deformation parameters suitably

contracted with the scalars.

We then derive the field transformations and the dynamics of the gauged supergravity

from the E11 viewpoint. An essential role is played by the generalised space-time associated

with the first fundamental representation l of E11. In particular we consider the non-linear

realisation E11 ⊗s l. An essential step in the construction of the dynamics is the existence

of a linear map Ψ from E11 onto a subspace k of the representation l such that the image

is the adjoint representation of a sub-algebra, denoted F11 of E11. This map is invariant

under F11 and it preserves the Lorentz character of the elements on which it acts. Such a

map does not exist in eleven dimensions, however, there is such a map in the IIA theory and

this is responsible for the theory of Romans in ten dimensions. Such maps also exists in any

dimension below ten. The map provides a projection from E11 into F11 and so splits E11

into F11 and its complement F⊥
11. It also follows that F11 is isomorphic to k. The generators

of k as well as E11 are active in the non-linear realisation and as such one finds a space-

time with coordinates arising from the presence of k in addition to those of the familiar

space-time. This also implies that we have additional transformations resulting from the

presence of k which become identified with the space-time independent components of the

gauge transformations. The latter can be used to gauge away some of the fields of E11,

which as a result of the identification of k and F11, are just the fields associated with

F11. Thus the fields which can not be gauged away are those corresponding to F⊥
11. The

additional coordinates do not appear in the final dynamical equation but their presence is

very natural in that they are associated with the branes that couple to the latter fields.

Some of these additional coordinates are just those of the usual space-time, but in the
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upper dimensions. These correspond to the presence of components of the graviton in the

upper directions and so to point particles.

The existence of an invariant map between E11 and l divides the generalised coordinates

in two sets one of which is closely associated with the gauging. It also specifies the group

which is gauged and the corresponding constraints on the embedding tensor. The resulting

gauge transformations and so the corresponding dynamics agree precisely with that found

in section 4 using supersymmetry. A very special case of this technique is that of the Scherk-

Schwarz reduction [42], however, the technique used in this paper is much more general.

In [43] it has been pointed out that the quadratic constraint of the embedding tensor

can be associated to (some of) the representations of the D forms. This is clear in the

five-dimensional example carried out in this paper, given that the quadratic constraints

of the embedding tensor project out the 27 ⊕ 1728 of the product ΘΘ [20], which are

the complex conjugates of the representations of the 5-form fields. The authors of [44]

observe that one can interpret the D-forms as Lagrange multipliers whose field equations

produce the quadratic constraint of the embedding tensor. In the five dimensional case this

observation can be checked explicitly determining the field strength of the 4-form at order

g, which contains the 5-forms. This analysis has not been carried out in this paper. It

would be interesting to further investigate in this direction. A month after this paper was

originally submitted, it was explicitly shown in [40] in the case of maximal supergravity

in three dimensions that the field equations of the 3-forms precisely lead to the quadratic

constraint of the embedding tensor.

As mentioned earlier there is considerable evidence for the E11 part of the non-linear

realisation and for l being the multiplet of brane charges however, there has so far been

very little evidence for the l part of the non-linear realisation that is the generalised space-

time that l leads to. However, in this paper we have seen that it is essential for the

construction of the gauged supergravities. In particular it directly leads to the terms in

the dynamics that contain no space-time derivatives such as the non-Abelian terms in

the Yang-Mills field strength and the gauge transformations that contain no space-time

derivatives. Indeed, the former can be traced back to derivatives in the Cartan forms with

respect to the extra coordinates while the latter arise from transformations in the extra

coordinates. While there is much that remains to be understood about the role of the E11

generalised space-time, at least part of it has been confirmed indicating that the rest also

has a required purpose.

As has already been noted [36] the use of the E11 generalised space-time [31] has some

features in common with the more recent generalised geometry [45, 46] which also adds

structure to that of traditional space-time. The E11 approach automatically adds to the

usual spacetime all the necessary coordinates and in particular those required to ensure U

duality and all the higher symmetries in E11. Those at low level are just the coordinates

corresponding to the charges of table 1 [33, 34]. Indeed the necessity of adding the scalar

charges in the first column was specifically commented on in reference [34]. The procedure

spelt out in this paper also includes all the effects from higher level field strengths, or

fluxes, and coordinates which occur at the higher levels of E11 and the l multiplet, indeed

the map Ψ involves generators associated with all the gauge fields and coordinates which
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are not Lorentz scalars.

The generalised geometry programme [45, 46] has largely concentrated on the coor-

dinates required for T duality introduced in a systematic way first in [47]. From the E11

perspective these are those found by decomposing to the O(10, 10) symmetry and keeping

the lowest level coordinates which for the IIA theory for example are Pa and Za11 corre-

sponding to xa and ya respectively [34]. Indeed one can formulate the string from the E11

perspective using these coordinates, however to formulate the eleven dimensional membrane

and five brane one requires more of the coordinates contained in the l representation [34].

The E11 ⊗ l non-linear realisation studied in this paper includes as a very special

case the old Scherk-Schwarz dimensional reduction technique [42]. The latter exploited

the existence of a rigid internal symmetry by giving the transformations some limited

dependence on the upper coordinates. However in the E11 ⊗ l approach a vast symmetry

i.e. E11 can be used in conjunction with all the coordinates in the l multiplet. We note

that this includes symmetries related to vector and higher rank fields. Indeed, the Romans

IIA theory can be found using such a symmetry.

The conformal group applied to E11 ⊗ l results in the usual coordinates of space-time

having general coordinate transformations. It would be good to understand what the con-

formal group implies for the higher coordinates and indeed what is their corresponding

geometry. Particularly in this context it would be good to see how the E11 and gener-

alised geometry approaches compare and what they can learn from each other. That the

generalised geometry required addition coordinates beyond those of the xa and ya of the

doubled torus of was readily apparent from the E11 picture [34, 36]. However, it would

be interesting to see how the geometrical aspects of the generalised geometry programme

appear when viewed from an E11 perspective.

One advantage of the E11 approach is that it unifies many aspects of supergravity and

so string theory. The gauged supergravities are such examples, while some can be obtained

by dimensional reduction of the ten and eleven dimensional supergravity theories there are

many others which have no higher dimensional origin. However, each gauged supergravity

is associated with a non-trivial D − 1 form and it is part of the unifying E11 non-linear

realisation [29]. Previously the gauged supergravities which had no higher dimensional

supergravity origin could only be obtained by deforming the supersymmetry algebra and

so were outside the framework of M theory as usually envisaged. It is straightforward to

apply the E11 ⊗s l non-linear realisation described in this paper to all the other cases and

obtain all the gauged maximal supergravities in any dimension.
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A. 5-forms in 5 dimensions from E11

In this appendix we want to extend the analysis of section 2 to include a 5-form generator.

This operator is associated to a field with five antisymmetric indices in five dimensions,

which has no field strength and therefore has no propagating degrees of freedom. Fields

with D antisymmetric indices in D dimensions are in general associated to spacetime-filling

branes, that have a crucial role in the construction of orientifold models.

The 5-form generator Ra1...a5,α
M occurs in the commutator

[

Ra1a2
M , Ra3a4a5,α

]

= Ra1...a5,α
M , (A.1)

and the Jacobi identity between the operators Ra,M , Rbc
N and Rde

P leads to the commutation

relation
[

Ra,M , Rbcde
NP

]

= −2Dα
[N

MRabcde,β

P ] gαβ . (A.2)

A constraint on this 5-form operator comes from the Jacobi identity between the operators

Ra,M , Rb,N and Rcde,α, which is

dMNPRabcde,α
P + 4Dβ

P
(MSαN)[PQ]gβγR

abcde,γ
Q = 0. (A.3)

The representation of the 5-form generator is contained in the 78 ⊗ 27 = 27 ⊕ 351 ⊕ 1728,

as can be seen from its E6 index structure, and it can be shown that eq. (A.3) restricts

this generator to be in the 27 ⊕ 1728 of E6, in exact agreement with [29, 30].

In order to determine the gauge transformations of the field associated to this genera-

tor, we have to extend the form of the group element of eq. (2.37), and we therefore write

gA = exp(AM
a1...a5,αR

a1...a5,α
M ) exp(AMN

a1...a4
Ra1...a4

MN )

exp(gαβA
α
a1...a3

Ra1...a3,β) exp(AM
a1a2

Ra1a2
M ) exp(Aa,MRa,M). (A.4)

Acting with

g
(5)
0 = exp(aM

a1...a5,αR
a1...a5,α
M ) (A.5)

leads to a transformation of the 5-form field

δAM
a1...a5,α = aM

a1...a5,α, (A.6)

while acting with the group element of eq. (2.42) leads to

δAM
a1...a5,α = aM

[a1a2
Aa3a4a5],α (A.7)

and acting with the one of eq. (2.44) leads to

δAM
a1...a5,α = −2a[a1,NA

PM
a2...a5]D

β
P

Ngαβ +
1

2
AM

[a1a2
AN

a3a4
aa5],PD

β
N

P gαβ

+
2

5!
A[a1,NAa2,PAa3,QAa4,Raa5],Sd

RSTDγ
T

QSδP [UM ]Dβ
U

Ngγδgαβ

−1

6
AM

[a1a2
Aa3,NAa4,Paa5],Qd

PQRDβ
R

Ngαβ . (A.8)
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From eq. (A.4) one can compute the part of the Maurer-Cartan form which is propor-

tional to Ra1...a5,α
M . The result is

GM
µa1...a5,α = ∂µA

M
a1...a5,α + 2A[a1,N∂µA

PM
a2...a5]D

β
P

Ngαβ −AM
[a1a2

∂µA
β
a3a4a5]gαβ

+A[a1,NAa2,P∂µA
γ

a3a4a5]S
δP [QM ]Dβ

Q
Ngγδgαβ

−1

3
A[a1,NAa2,PAa3,Q∂µA

R
a4a5]D

γ
R

QSδP [SM ]Dβ
S

Ngγδgαβ

+
2

5!
A[a1,NAa2,PAa3,QAa4,R∂µAa5],Sd

RSTDγ
Q

TSδP [UM ]Dβ
U

Ngγδgαβ . (A.9)

As was already discussed in section 2, consistency requires that the fields transform

properly under the closure of E11 with the conformal group [9]. This corresponds to

promoting the global transformations to local ones, which leads to eq. (2.56) and

aM
a1...a5,α = 5∂[a1

ΛM
a2...a5],α. (A.10)

The resulting gauge transformations are the ones of the 5-forms on maximal five-

dimensional supergravity, that is the gauge transformations that one would obtain imposing

the closure of the supersymmetry algebra on the 5-forms in five dimensions. The corre-

sponding field-strength would result from eq. (A.9) with all the indices antisymmetrised,

but this object vanishes identically because it has six indices. Thus the 5-form fields have

no field strength, and they do not correspond to any propagating degree of freedom.

B. Generalised coordinates in a toy model

In this paper we have seen how generalised coordinates have played a crucial role in formu-

lating the dynamics of the gauged supergravities. Such coordinates have not been used in

this way before and in this appendix we will illustrate some of the steps for a simple model

so that the reader can gain some familiarity with the techniques without all the complica-

tions of the five dimensional gauged supergravity theory. We will see that a very simplified

case of the toy model is just the Scherk-Schwarz dimensional reduction procedure [42].

We consider an algebra that has the generators Pa and V α and Raα and Rα. They

obey the relations

[V α, V β] = −gfαβ
γV

γ , [Rα, V β] = fαβ
γV

γ , [Raα, V β] = 0, [Raα, Pb] = δa
bV

α (B.1)

and

[Rα, Rβ] = fαβ
γR

γ , [Rα, Rbβ ] = fαβ
γR

bγ . (B.2)

We note that if we define Y α = V α + gRα then

[Y α, Y β] = gfαβ
γY

γ , [Rα, Y β] = fαβ
γY

γ , [V α, Y β] = 0. (B.3)

The generators Pa and V α are to be associated with a generalised space-time while Rα

generate the group G and the generators Raα belong to the adjoint representation of G.
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The group element has the form

g = ex
aPaeyαY α

eAaα(x)Raα

gϕ(x) (B.4)

where gϕ(x) = eϕαRα
is a group element of G and xa and yα are the coordinates of the

generalised space-time. The fields Aaα and ϕ depend only on the coordinates xa and not on

the yα’s. In doing so we assume that the local subgroup of the non-linear realisation possess

y dependent transformations that can be used to bring the group element to the above form

from the most general form. We will also assume that the part of the local subgroup that

depends only on the coordinates xa is the group that contains the identity element. The

above model emerges from that of the five dimensional gauged supergravity theory if we

truncate to the above fields and coordinates, take those that remain to transform in the

adjoint representation and set ΘN
α = δN

α ,WMN = 0.

To calculate the Cartan forms we need that

e−yαY α

deyαY α

= dyαe
α

βY
β (B.5)

where eαβ are the vierbeins, or Cartan forms, for the group G. The Cartan forms are then

easily found to be given by

g−1dg = dxµEµ
aPa + dyαE

α
βV

β + dxµEµ,βV
β + dyαE

α,aPa

+dxµGµ,αR
α + dxµGµ,aαR

aα + dyαG
α
,βR

α + dyβG
α
,aβR

aβ (B.6)

where

Eµ
a = δa

µ , Eα
β = eαγ(e−ϕ·f )γα , Eµ,α = −Aµβ(e−ϕ·f )βα , Eα,a = 0 (B.7)

and

Gµ,αR
α = g−1

ϕ ∂µgϕ , Gµ,aα = ∂µAaβ(e−ϕ·f )βα ,

Gα
,β = geαγ(e−ϕ·f )γβ , Gα

,aβR
aβ = geαγAaδf

γδ
ǫ(e

−ϕ·f )ǫβ. (B.8)

In carrying out this calculation we have used the fact that

e−ϕβRβ

RαeϕβRβ

= (e−ϕ·f )αβR
β (B.9)

where (ϕ · f)αβ = ϕγf
γα

β which contains the only dependence on yα.

In the method of non-linear realisations one usually uses the inverse vierbein to make

the first index on the G’s “flat” that is Ĝa,• = (E−1)a
µGµ,• + (E−1)aγG

γ
,• where • stands

for the indices on the R’s. The Ĝ’s are inert under the rigid transformations g → g0g

up to possible compensating local transformations which maintain the form of the group

element. One finds that

Ĝa,αR
α = g−1

ϕ (δµ
a∂µ + gAaαR

α)gϕ (B.10)

while

Ĝa,bα = (δµ
a∂µAbβ + gAaδAbγf

δγ
ǫ)(e

−ϕ·f )ǫα. (B.11)
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We note that the “flat” Cartan forms do not contain the factor eαγ and as a result are

independent of y. Usually the dynamics is constructed from the Ĝ’s in which case the

dynamics is independent of yα, however, in this toy model this is not quite the case but

the conclusion is the same.

The transformations of the fields are a little more lengthy to calculate. Using the

commutation relations of eqs. (B.1), (B.2) and (B.2) and taking the rigid group element

of the form

g0 = ebαV α

eaαRα

eaaαRaα

(B.12)

we must evaluate g0g to lowest order in the parameters of g0. We find that xa is

unchanged, yα becomes a complicated function of yα and the parameters of g0, while the

fields transform as

A′
aα = Aaα + aaα + cγAaδf

γδ
α , gϕ′ = ecγRγ

gϕ (B.13)

where

cγ = −g(bγ + xcacγ) + aγ . (B.14)

In carrying out this calculation we have used y dependent compensating transformations

to maintain the form of the group element as in eq. (B.4). The x dependent part of cα
arises from passing eaaαRaα

past ex
aPa to create a V α transformation and then processing

this. We note that −gaaα = ∂acα.

By explicitly calculating the variation of the fields using eqs. (B.13) and (B.14) one

finds that the covariant objects are given by

Ĝa,αR
α = g−1

ϕ (δµ
a∂µ + gAaαR

α)gϕ (B.15)

and

Fabα = 2
(

δµ
[a∂µAb]β +

g

2
AaδAbγf

δγ
ǫ

)(

e−ϕ·f
)ǫ

α (B.16)

The invariant action is then given by

∫

dDx

(

1

2
Ĝa,αĜa,β +

1

4
FabαF

ab
β

)

gαβ , (B.17)

which is the Yang-Mills action coupled to scalars which are in a non-linear realisation of G.

We note that Fabα is not quite 2Ĝ[a,b]α since there is a factor of 2 out on the AA term.

This discrepancy arises from the fact that the Ĝ’s still transform under compensating local

transformations that are y dependent. Taking this into account one arrives at the above

covariant expressions. This point is explained in detail in section 5.

We will now explain that if one takes a particularly simple case one finds the di-

mensional reduction of Scherk and Schwarz. We consider a theory that has undergone a

dimensional reduction with the result that it contains some scalars ϕ in a non-linear reali-

sation, gravity which we neglect and a Kaluza-Klein vector Aa
⋆ which we keep. Let xa be

the coordinates of the remaining space-time after the dimensional reduction and y⋆ one of

the other coordinates that lies in the same direction as the vector field. In this case we can

identify V = P⋆ R
a = −Ka

⋆, y = y⋆ and Aa
⋆ = Aa where the K’s belong to the SL(D,R)
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algebra associated with gravity in the higher dimension. All these generators are singlets

under the group G to which the scalars belong and one has [−Ka
⋆, Pb] = δb

aP⋆ as required.

The group element of equation (B.4) takes the form

g = ex
aPaeyY eAa(x)Ra

gϕ(x) (B.18)

where now Y = V + gT , T = mαR
α is just a specific element of G and mα are constants.

Clearly, the dynamics is y independent as the Cartan forms g−1dg do not contain this

coordinate. The reason being in this case that Y form an Abelian algebra. In general in

the Scherk-Schwarz dimensional reduction, and indeed in this case, one finds a mass term

for the scalars. The reason it is absent in the above toy model is that Θβ
α = δβ

α and so is

rather trivial. It is straightforward to generalise the toy model to the case of a non-trivial

Θ as is the case for the gauged supergravities of sections five.
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