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ABSTRACT: We formulate all the five dimensional gauged maximal supergravity theories
as non-linear realisations of the semi-direct product of Fq; and a set of generators which
transform according to the first fundamental representation [ of Fq1. The latter introduces
a generalised space-time which plays a crucial role for these theories. We derive the Fqq
and [ transformations of all the form fields and their dynamics. We also formulate the five
dimensional gauged supergravity theories using the closure of the supersymmetry algebra.
We show that this closes on the bosonic field content predicted by Ei; and we derive the
field transformations and the dynamics of this theory. The results are in precise agreement
with those found from the Fy; formulation. This provides a very detailed check of Eiy
and also the first substantial evidence for the generalised space-time. The results can be
generalised to all gauged maximal supergravities, thus providing a unified framework of all
these theories as part of F1j.
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1. Introduction

One of the most surprising discoveries in the development of supergravities was the hid-
den symmetries in the maximal supergravity theories in lower dimensions. The first to
be discovered, in 1978, was the E; symmetry in four dimensions [fl], while the last to be
found in 1983 was the SL(2,R) symmetry of ten-dimensional 1IB supergravity [B]. The
highest dimension in which a maximal supergravity multiplet exists is eleven, and the
corresponding theory [ff] is unique. This theory compactified on a circle gives rise to the
ten-dimensional ITA supergravity [, while the IIB theory [P, f] has no higher dimen-
sional origin. In any dimension below ten, maximal supergravity theories are unique and
can be obtained by torus dimensional reduction of both the ten dimensional theories and
the eleven-dimensional one. The hidden symmetry increases with the number of compact
dimensions, and for instance one gets Fg in five dimensions [§, []] and Es in three dimen-
sions [§], corresponding to compactifying the eleven dimensional theory on a six-torus and

on an eight-torus respectively.



For many years it was universally assumed that these large symmetries were a quirk
of dimensional reduction on a torus and that they were not present in the uncompactified
theories. In particular, it was believed that there was no hidden symmetry in eleven di-
mensional supergravity. The reason for this is that these hidden symmetries are associated
with the scalars that occur in these theories, and more precisely the hidden symmetries
are non-linearly realised in the scalar sector. The fact that the eleven-dimensional theory
has no scalars was believed not to leave room for any large hidden symmetry. Further-
more, the symmetries found in the dimensionally reduced theories are internal in that they
commute with the spacetime symmetries. It appeared not to be possible to realise these
symmetries in the uncompactified theory, where they would have to act non-trivially on
the gravitational field.

However, in 2001 it was conjectured [g] that eleven dimensional supergravity could be
extended so as to have a non-linearly realised infinite-dimensional Kac-Moody symmetry
called Fq1, whose Dynkin diagram is shown in figure 1. We now list the main results
supporting this conjecture.

e Eleven dimensional supergravity itself can be formulated as a non-linear realisa-
tion [I0] of an algebra. This non-linear realisation naturally gives rise to both a
3-form and a 6-form, and the resulting field equations are first order duality re-
lations, whose divergence reproduces the 3-form second-order field equations of 11-
dimensional supergravity. The eleven-dimensional gravity field describes non-linearly
SL(11,R), which is a subalgebra of this algebra. Indeed, gravity in D dimensions can
be described as a non-linear realisation of the closure of the group SL(D,R) with the
conformal group [0], as was shown in the four dimensional case in [L]]].

e 1 is the smallest Kac-Moody algebra which contains the algebra found in the non-
linear realisation above. This Fq; algebra is infinite-dimensional, and the E7j; non-
linear realisation contains an infinite number of fields with increasing number of
indices. The first few fields are the graviton, a three form, a six form and a field
which has the right spacetime indices to be interpreted as a dual graviton. This is
the field content of eleven dimensional supergravity, and keeping only the first three of
these fields one finds that the non-linear realisation of F1; reduces to the construction
discussed in the first point and so results in the dynamics of this theory [f].

e Theories in D dimensions arise from the F1; non-linear realisation by choosing a suit-
able SL(D, R) subalgebra, which is associated with D-dimensional gravity. The Ap_;
Dynkin diagram of this subalgebra, called the gravity line, must include the node la-
belled 1 in the Dynkin diagram of figure 1. In ten dimensions there are two possible
ways of constructing this subalgebra, and the corresponding non-linear realisations
give rise to two theories that contain the fields of the IIA and IIB supergravity theo-
ries and their electromagnetic duals [H, @] Below ten dimensions, there is a unique
choice for this subalgebra, and this corresponds to the fact that maximal supergravity
theories in dimensions below ten are unique. Again, the non-linear realisation in each
case describes, among an infinite set of other fields, the fields of the corresponding



supergravity and their electromagnetic duals. In each dimension, the part of the
F11 Dynkin diagram which is not connected to the gravity line corresponds to the
internal hidden symmetry of the D dimensional theory. This not only reproduces all
the hidden symmetries found long ago in the dimensionally reduced theories, but it
also gives an eleven-dimensional origin to these symmetries.

e The Weyl transformations of Fq; are the known U duality symmetries found in the
ITA and IIB supergravity theories and also when these are dimensionally reduced on

tori [13].

e Amongst the infinitely many fields in the non-linear realisation of Fy1, there is an
infinite preferred set that describes all possible dualisations of the on-shell degrees
of freedom of the eleven-dimensional supergravity theory. This lifts the infinite set
of dualities that occur in two dimensions to eleven dimensions. All the infinitely
many remaining fields in eleven dimensions have at least one set of ten or eleven
antisymmetric indices, and therefore they do not correspond to on-shell propagating
degrees of freedom [[[4].

All the maximal supergravity theories mentioned so far are massless in the sense that no
other dimensional parameter other than the Planck scale is present. In fact, even this pa-
rameter can be absorbed into the fields such that it is absent from the equations of motion.
There are however other theories that are also maximal, i.e. invariant under 32 supersym-
metries, but are massive in the sense that they possess additional dimensionful parameters.
These can be viewed as deformations of the massless maximal theories. However, unlike the
massless maximal supergravity theories they can not in general be obtained by a process
of dimensional reduction and in each dimension they have been determined by analysing
the deformations that the corresponding massless maximal supergravity admits. The first
example of such a theory was found in four dimensions [[L5], and it results from gauging an
SO(8) subgroup of the global symmetry E7. The highest dimension for which a massive
deformation is allowed is ten, and the corresponding massive theory was discovered by
Romans [[[§]. This theory possesses a single additional mass parameter and can be thought
of as a deformation of the IIA supergravity theory in which the two-form receives a mass
via a Higgs mechanism.

With the exception of the Romans theory, all the massive maximal supergravities
possess a local gauge symmetry carried by vector fields that is a subgroup of the symmetry
group G of the corresponding maximal supergravity theory, and are therefore called gauged
supergravities. In general these theories also have potentials for the scalars fields which
contain the dimensionful parameters as well as a cosmological constant. Another typical
feature of massive maximal supergravities is that their field content is not usually the
same as their massless counterparts. As an example consider the five-dimensional SO(6)
gauged supergravity [[q]. While the massless maximal supergravity theory [, ff] contains
27 abelian vectors, the gauged one describes 15 vectors in the adjoint of SO(6), as well as
12 massive 2-forms satisfying self-duality conditions. One can regard this as an example of
the rearrangement of degrees of freedom induced by the Higgs mechanism. Given that Fq;



contains in any dimensions all the fields of the corresponding supergravity together with
their magnetic duals, this phenomenon turns out to be automatically encoded in the E7;
non-linear realisation.

In recent years there have been a number of systematic searches for gauged maximal
supergravity theories and in particular in nine dimensions and in dimension from seven
to three all such theories have been classified [L§—R(]. This classification is in perfect
agreement with Fqq, and this leads us to the last three points in our list of the main results
supporting the Fq1 conjecture, which are related to the analysis of the E71 fields that do
not correspond to the propagating fields of supergravity or to their duals.

e The cosmological constant of ten-dimensional Romans ITA theory can be described as
the dual of a 10-form field-strength [R1], and the supersymmetry algebra closes on the
corresponding 9-form potential [PJ]. This theory was found to be a non-linear reali-
sation 23] which includes a 9-form. This 9-form is automatically encoded in E1q [4],
where it arises in the dimensional reduction of the eleven-dimensional field A, 4,0, (bc)
in the irreducible representation of SL(11, R) with ten antisymmetric indices a; . .. ajg
and two symmetric indices b and c¢. Therefore F1; not only contains Romans ITA,
but it also provides it for the first time with an eleven-dimensional origin [25].

e The F;; non-linear realisation in ten dimensions also predicts the number of
spacetime-filling 10-forms that arise in ITA and IIB supergravities, the result being
that there are an SL(2,R) quadruplet and a doublet of 10-forms in IIB and two
10-forms in ITA [4]. Although these forms are non-propagating and have no field
strength, they are associated to spacetime-filling branes whose presence is crucial for
the consistency of orientifold models. The analysis of 10-forms performed imposing
the closure of the supersymmetry algebra shows perfect agreement with the FEjq
predictions, for both the IIB [2q] and the IIA 7] case. Also, the gauge algebra that
supersymmetry implies is exactly reproduced by Ei; [R].

e By studying the eleven-dimensional fields of the F1; non-linear realisation, one can
determine all the forms, i.e. fields with completely antisymmetric indices, that arise
from dimensional reduction to any dimension [RJ]. In particular, in addition to all
the lower rank forms, this analysis gives all the D — 1-forms and the D-forms in
D dimensions. The D — 1 and D-forms predicted by FE7; can also be derived in
each dimension separately [BU]. The D — 1-forms have D-form field strengths, that
are related by duality to the mass deformations of gauged maximal supergravities,
and the F4; analysis shows perfect agreement with the complete classification of
gauged supergravities performed in [[9, RJ]. Therefore Ej; not only contains all
the possible massive deformations of maximal supergravities in a unified framework,
but it also provides an eleven-dimensional origin to all of them. Indeed, while some
gauged supergravities were known to be obtainable using dimensional reduction of
ten or eleven dimensional supergravities, this was not generically the case. As a
result the gauged supergravities were outside the framework of M-theory as it is
usually understood. The D-forms are associated to spacetime-filling branes in D



dimensions, which again play a crucial role in string theory, and their classification
was not known, apart from the ten-dimensional case.

The net upshot of all this is that there is overwhelming evidence for an Fy; symmetry in
the low energy dynamics of what is often called M theory. The above evidence concerns
the adjoint representation of F11, or the part of the non-linear realisation that involves the
fields associated with the Fq; generators. However, there is also the question of how space-
time is encoded in the theory. In the non-linear realisations mentioned above the generator
of space-time translations P, was introduced by hand in order to encode the coordinates of
space-time. From the beginning it was understood that this was an ad-hoc step that did not
respect the Ey; symmetry. It was subsequently proposed [BI] that one could include an Ejq
multiplet of generators which had as its lowest component the generator of space-time trans-
lations. This was just the fundamental representation of Fy; associated with the node la-
belled 1 in the Dynkin diagram of figure 1 and it is denoted in this paper by [. The evidence
for the relevance of the [ multiplet and this method of introducing space-time is as follows.

e The infinitely many generators in the [ multiplet have an increasing number of eleven-
dimensional space-time indices. The next two generators after the P,’s are objects
with two and five totally anti-symmetrised indices that can be identified with the
central charges of the eleven-dimensional supersymmetry algebra, then followed by
an infinite number of further elements [B1].

e The members of the [ multiplet can be identified with the brane charges. This is
clearly the case at the lowest levels, but one can show that to every element of [ there
corresponds a field in the adjoint representation of E1; to which the corresponding
brane would couple [B7].

e By decomposing the [ multiplet into representations of SL(D,R)® G, where SL(D, R)
is the F71 sub-algebra associated with the D-dimensional non-linear realisation of
gravity and G the internal symmetry group as described above, one can find the
brane charges predicted in the D dimensional theory. For each type of brane, i.e.
point particle, string, etc, one finds charges that are in multiplets of G [ The low
level results are summarised in table 1 [BJ, B4]. In fact, the very lowest level brane
multiplets had previously been found [Bg] by applying the known U-duality rules to
a familiar brane charge. The results from the [ multiplet are in complete agreement
with those found previously. This check is comparable to the later one discussed
above for the deformation forms of gauged supergravities. As in that case, Fq1 also
provides a previously missing unifying framework for the brane charges, many of
which previously had no higher dimensional origin and could not be identified with
charges in the supersymmetry algebra.

e The dynamics is taken to be the non-linear realisation based on E71; ®¢! which stands
for the semi-direct product between the two algebras. The presence of the [ generators
results in an infinite number of coordinates which in eleven dimensions take the form

a
€T, xalaza xal...as,a mal...a7,b7 xal...agy (11)



As a result, the fields would generically depend on a generalised space-time that is
infinite dimensional. This has the nice interpretation in that one uses a formulation
of space-time that includes all possible ways of measuring it and not just the z?¢
corresponding to a point particle [B1]. The non-linear realisation mentioned above
corresponds to considering the lowest order in the [ multiplet, i.e. only considering
the dependence on the usual coordinate z® of spacetime. This has similar aspects to
the subsequently proposed generalised geometry, as already pointed out in [Bf]. The
additional coordinates as seen in D dimensions can be read off from table 1.

Thus although there is very good evidence that the [ multiplet does correctly account for
the brane charges, there is so far very little evidence for the generalised space-time that
should be present in the non-linear realisation. One of the main results in this paper is to
find the dynamics of the five dimensional gauged supergravities using their formulation as
a F11 ®s [ non-linear realisation. In this calculation some of the generators of [, and their
corresponding coordinates, will play a crucial role.

An alternative method of introducing space-time has been considered in the context
of F1p [B4]. In this approach the fields depend only on time and the spatial derivatives of
the fields are conjectured to be some of the higher level fields in F1¢ which are known to
have the appropriate Ag structure.

There are two obvious problems in trying to formulate the dynamics of gauged su-
pergravities using non-linear realisations. The first is that the field-strengths that arise in
gauged supergravities contain terms that have no space-time derivatives while the dynam-
ics which follows from a non-linear realisation is usually constructed from the Cartan forms
that explicitly contain derivatives. The second problem is that the gauged supergravity
theories involve vector fields that possess non-abelian gauge transformations. Given that
FE1 is automatically democratic [, [2, B4], in the sense that each form appears with its
magnetic dual, one has to introduce fields that are dual to the non-abelian vectors. For
instance these would be 2-forms in five dimensions. These 2-forms transform under the
just mentioned Yang-Mills transformations, but also possess their own gauge symmetry.

In this paper we want to show how the dynamics of gauged supergravities arises in
the F11 non-linear realisation. We will see that the two problems above are solved. The
first problem is solved by the presence of the generalised coordinates. One finds terms
independent of space-time because some of the derivatives in the Cartan forms are not
those of the familiar space-time, but of the higher coordinates in the generalised space-
time and so they read off the dependence of the fields on these coordinates which as it
turns out is rather constrained. The second problem is solved by considering all the E7;
form fields and dual form fields and their corresponding F7; transformations in the presence
of the generalised coordinates. We will focus in particular on the five-dimensional case,
and show that the non-linear realisation gives the required gauge-covariant field strengths
provided that each form transforms with respect to the gauge parameter of the form of
higher rank. This means that the vector A, has a shift gauge transformation 64, ~ X,
with respect to the gauge parameter ¥, of the 2-form, i.e. 6B, = 20),%,), and the 2-form
has a shift gauge transformation with respect to the parameter of the 3-form, and so on. It



is this requirement that makes it possible to write a field strength for the 2-form B, that
is covariant under the non-abelian gauge transformations associated with A, and invariant
under its own gauge transformations X, and thus this result deeply relies on the fact that
one has a fully democratic description. Proceeding this way one can write down gauge-
covariant field strengths and gauge-invariant duality relations in all cases. In particular,
in the five-dimensional case the vectors are dual to the 2-forms and the 3-forms are dual
to the scalars. This construction can be generalised to any gauged maximal supergravity,
and more generally to any gauged theory that admits a Kac-Moody description.

In order to provide a check of our Fy derivation of gauged supergravities in five dimen-
sions we consider the supersymmetry transformations on the democratic set of form fields
required by F11. We find that the supersymmetry algebra of gauged maximal supergravity
in five dimensions does indeed close on the 2-forms and the 3-forms predicted by Fi1, pro-
vided that the duality relations between the 2-forms and the 1-forms, as well as between
the 3-forms and the scalars, are satisfied. We recover precisely the dynamics implied by
the 11 non-linear realisation. In fact the features of the gauge algebra associated to the
higher rank fields was discussed in an independent bottom-up approach in [Bg], where the
results of [[9, Q] were extended to higher rank forms. Our result therefore shows for the
first time that supersymmetry is compatible with this extension.

In order to derive these results, we first have to compare the F1; and the supergravity
results in the massless case. We therefore consider the five-dimensional case, and we first
determine the massless dynamics as results from Fj1;. We then show that the supersym-
metry algebra of massless five-dimensional supergravity admits a democratic formulation,
and we close the algebra on all the forms in the theory with the exception of the spacetime-
filling forms. The results we find using supersymmetry exactly reproduce the ones obtained
from E11, and we show in detail how the computations are performed in the two cases, so
that the reader can appreciate how simple they are on the Fq; side. We then consider the
gauged case, and describe the democratic formulation of gauged maximal supergravity in
five dimensions using the supersymmetry algebra. We finally compare these results with
those found from the Fy; ®; [ non-linear realisation and find complete agreement. This
analysis shows the crucial role that the [ multiplet and its associated generalised coordinates
have in describing the dynamics of gauged maximal supergravities.

The paper is organised as follows. In section 2 we describe how the massless dynamics
arises in the Fi; non-linear realisation. Before considering the five-dimensional case, we
review the eleven-dimensional one to make the reader familiar with the algebra. In section
3 we show that the supersymmetry algebra of massless maximal supergravity in five di-
mensions closes on the 2-forms and 3-forms dual to the vectors and the scalars respectively,
and on the 4-forms predicted by F11. The field strengths of the 4-forms are dual to the
mass deformation parameters, and thus they vanish in the massless theory. Section 4 is
devoted to the analysis of the supersymmetry algebra of gauged maximal five-dimensional
supergravity. We show that the algebra closes on the 2-forms and the 3-forms, and we
determine the duality relation between the field strengths of the 4-forms and the mass
deformation parameters. In section 5 we show how the F1; ®;1 non-linear realisation gives
rise to gauged maximal supergravities, focusing on the five-dimensional case. Section 6 is
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Figure 1: The F;; Dynkin diagram corresponding to 11-dimensional supergravity.

devoted to a detailed discussion of the Fq1 ®, [ non-linear realisation for the case of the
five-dimensional SO(6) gauged supergravity. Section 7 contains the conclusions. We also
include two appendices. In appendix A we determine the gauge transformations of the
5-forms of maximal five-dimensional supergravity from F1;, and in appendix B we show
how the gauging results from generalised coordinates in the non-linear realisation for a toy
model that illustrates the main features of section 5.

2. E;; and massless dynamics

In this section we will show how the F;; non-linear realisation generates the gauge trans-
formations and the field strengths of all the fields with completely antisymmetrised indices
in the five-dimensional case. As a preliminary step to make the reader familiar with the
notation, we will first review the original E1; computation in eleven dimensions [fJ], where
the gauge transformations and field strengths of the 3-form and its dual 6-form of eleven-
dimensional supergravity were derived.

In [g] it was conjectured that an extension of eleven dimensional supergravity can be
described by a non-linear realisation based on the Kac-Moody algebra Fq; resulting from
the Dynkin diagram of figure 1. The horizontal line in the Dynkin diagram, associated
with the SL(11, R) subalgebra that in the non-linear realisation is associated to the eleven
dimensional gravity sector of the theory, is called the gravity line.

The generators of E7; are essentially the ones of SL(11,R) together with the generators
R and Ry, in the representations of SL(11,R) with three antisymmetric indices, asso-
ciated to the exceptional node, and multiple commutators thereof, subject to the Jacobi
identities. More precisely, F11 is defined as a Kac-Moody algebra, which is obtained by mul-
tiple commutators of the Chevalley generators subject to the Serre relations. The multiple
commutators of the Chevalley generators of SL(11, R) lead to all the generators of SL(11,R),
while the multiple commutators of these with the Chevalley generator associated with the
exceptional node lead to R%¢ and Rgpe. All the other generators are then found from mul-
tiple commutators of R%¢ and Rgy., subject to the Serre relations. It is useful to classify
the generators of the algebra in terms of the number of times the generator R®¢ occurs
in the commutators defining them, as was shown in [[J]. This was subsequently called the
level. As an example, the generator with 6 antisymmetric indices occurs in the commutator

|:Rabc7 Rdef} _ g pabedef (2.1)

and therefore corresponds to level 2. The generator Ry, has level —1, and therefore all
the generators with lower indices have negative level. In general, the generators at level



I have 3[ upper indices if [ is positive, and —3[ lower indices if [ is negative. The only
F11 generators whose SL(11,R) indices are completely antisymmetric are R*¢ and R% %,
together with their negative level counterparts.

By definition, the non-linear realisation must be invariant under

g—909h, (2.2)

where g is a global Ej; transformation and h € H is a local transformation (to be precise,
H is the Cartan involution invariant subalgebra, which is the infinite-dimensional gen-
eralisation of the maximal compact subalgebra of finite-dimensional groups). This local
transformation can be used to put the group element in the Borel subgroup, which is the
one generated by the Cartan subalgebra and the generators associated with the positive
roots. As a result, there is a one-to-one correspondence between the fields of the theory and
the generators of Fq1 with non-negative level. At level zero, this results in the description
of gravity as a non-linear realisation, and the level zero field is therefore the graviton. The
generator R at level 1 corresponds to the 3-form Ay, of 11-dimensional supergravity
and the generator R at level 2 to its 6-form dual A,, .. The generator at level 3
R®1-98:% in the irreducible hooked Young tableaux representation with 8 antisymmetric
indices corresponds to the dual graviton [J]. At level 3 one might expect also a generator
with 9 completely antisymmetric indices, but this is ruled out due to the Jacobi identities.

In this paper, we want to analyse the gauge transformations and field strengths of the
fields with completely antisymmetric indices in E11, and thus in this 11-dimensional case
we are interested in the fields up to and including level 2. We therefore write down only
the relevant part of the group element, which is

g = exp(z"P,) ga, (2.3)

where

1 1

is the part of g that contains the 3-form and the 6-form. This way of writing down the
group element differs from the original one of [[[J, f] only by terms of higher level, which
do not affect the computation we are reviewing. The momentum generator P, introduces
spacetime, and is only the first part of an infinite dimensional representation of F1; which
we call the [ representation [BI]], that will also be discussed in detail in section 5. A global
F11 transformation of g acting from the left leaves the Maurer-Cartan form

V=ygldg (2.5)

invariant. In particular, we are interested in the Fp; transformations generated by

1 .
g(()3) = €xp <§aa1...a3Ra1ma3> (26)
and .
966) = exp <§aa1,,,a6R“1“'“6> , (2.7)



where ag, .45 and aq, . 44 are infinitesimal and constant. These parameters are global trans-
formations of the F1; fields, and in particular we can read the transformations of the fields
Aay..as and Ag, 4 in (B4). These transformations will be promoted to gauge transforma-
tions as we will see in the following, and are determined computing the part of gpga that
has the form g4/, where A’ are the transformed fields. We use the operator identities

expC expB = ...exp <—i[B, [B...[B, [B,C’]]]]>

n!
exp <—%[B, [B,C’]]> exp(—[B, C]) expB expC (2.8)
and
expC expB = ...exp <—ﬁ[B, [B...[B,[B,C]]. ]])

exp <—%[B, [B,C]]) exp (—%[B,C]) exp(B+C),  (29)

where B and C are any operators and we are only considering first order in C, so that we
neglect C? and higher order. Multiplying eq. (B-§) by exp(—C) one recovers the well-known
Baker-Campbell-Hausdorff formula. Eq. (.9) can be verified order by order expanding the
exponentials and comparing powers of B. In our case, the operator B corresponds to A- R,
and the operator C to a - R, and neglecting higher order in C corresponds to the fact
that the parameters a are infinitesimal. When applied to our case, eqs. (2.§) and (R.9)
are particularly useful because they preserve the form of the group element. Defining
dA(z) = A'(z) — A(z), we obtain

5Aa1...a3 = Qqq...a3

514(11...0,6 = aal...ae + 20a[a1...a3Aa4...a6}' (210)

We now want to determine the field strengths of A, 4, and Ag, . 4 from the Maurer-
Cartan form. To this end, we only need to consider

94" dga. (2.11)
We use the operator identities
_B, B 1 1 1
e “de” =dB+ §[dB,B] + g[[dB,B],B] + ﬁ[[[dB,B],B],B] + - (2.12)
and ) )
e"BDeP = D+ D, B] + 51D, Bl B] + 5[[[1),3], B],B] +--- (2.13)
valid for any pair of operators B and D. Eq. (R.13) can be written in the compact form
1— -B
e BdeP = Be NdB, (2.14)

where the A product denotes multiple commutators, so that

BAC =[B,C)| B*AC = [B,[B,C]] (2.15)

— 10 —



and so on. Identifying the operators B and D with the relevant A- R’s and their derivatives
and commutators, one obtains

1
dzt g duga = dat gauAal,,,asRal---%

1
4—@(@14[11“,&6 + 200, Aq,..a3Aay...ag) R0 + - - (2.16)

where the dots correspond to higher level operators. The quantities

G,ual...ag - a,uAal...ag
Gual...ag = auAaL..as + 2oauA[a1...a3Aa4...a6} (217)

are invariant under the transformations of egs. (R.10).

We now want to describe the dynamics out of the Eyj-invariant quantities of eq. (2.17).
The requirement is that the system leads to massless equations for the Goldstone fields
Aq,.az and Ay, qs. For this to lead to a consistent dynamics, one needs to promote the
global symmetries of eq. (R.10) to local ones, because a massless field of non-vanishing spin
requires gauge invariance. It turns out that if one considers the closure of Ej; with the
eleven-dimensional conformal group, and considers transformations of the fields that result
from multiple commutators of the generators of Fj; with the conformal ones, the most
general transformation that results is a gauge transformation dA, where A is an arbitrary
function of z [[(]. This result is rather remarkable, because it deeply relies on how the
conformal transformations act on the fields. The parameter a can be identified with the
z-independent component of dA, and the full transformation can be obtained replacing
the parameter a with dA in the 1y transformations. For fields with totally antisymmetric
indices, the gauge-invariant field strengths are obtained simply antisymmetrising the indices
of the G’s in the Maurer-Cartan form.

One therefore obtains from eq. (R.17) the field strengths

Fa1...a4 = 4G[a1...a4] = 48[01 Aa2a3a4}

Fal...a7 = 7G[a1...a7] = 78[(11 Aaz...a7] + 35F[a1...a4Aa5a6a7} (218)
which are invariant under the gauge transformations
0Aa; . a5 = 30ia; Nagas)
5Aa1...a5 = 66[a1Aa2ma5] + 608[(111\&2&314(14@5%]. (2.19)

Form the field strengths of eq. (R.1§), the unique non-trivial first order equation that can
be written is a duality condition of the form

1
Fal...a4 = ﬁeal...a4b1...b7Fb1mb77 (220)

which leads to second order field equations for both the 3-form and the 6-form [L{].
The supersymmetry algebra of the original 11-dimensional supergravity, which includes
a 3-form potential, can be extended in order to include a 6-form dual to the 3-form. In this
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Figure 2: The Fj; Dynkin diagram corresponding to 5-dimensional supergravity. The internal
symmetry group is Eg(y)-

democratic formulation, the supersymmetry algebra on the 6-form closes using the duality
relation between the field strengths of the 3-form and the 6-form, and it generates exactly
the gauge transformations of eq. (R.19), up to field redefinitions. In the remaining of this
section, we want to determine the gauge transformations of the fields of five dimensional
maximal supergravity in the democratic formulation which results from Fy;.

We now consider the E1; non-linear realisation giving rise to a five-dimensional space-
time. The corresponding Dynkin diagram can be drawn as in figure 2, where the horizontal
line is the gravity line associated with SL(5,R) and one can see the appearance of the ex-
ceptional group Eg, that is the internal symmetry group because it is the part of the Dynkin
diagram that is not connected to the gravity line.

The generators with completely antisymmetric indices, with the exception of the space-
filling 5-forms, are given by

R Ra,M RabM Rabc,a Rabad[MN]7 (221)

where R®, o = 1,...,78 are the Eg generators, and an upstairs M index, M =1,...,27,
corresponds to the 27 representation, a downstairs M index to the 27 and a pair of anti-
symmetric downstairs indices [M N] correspond to the 351 as the tensor product of 27 ® 27
in the anti-symmetric combination only contains the 351 [29].

We now write the commutators of the Fy; generators of eq. (R-21]) [R]] as explained
above for the 11-dimensional case. We write the commutation relations for the Eg genera-
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tors in the form
[Ra,Rﬁ] = o8 RV, (2.22)

where faﬁy are the structure constants of Eg. The commutator of these generators with
the 1-form generator R*M is determined by the fact that the Jacobi identity involving R,
RP and R*M implies that this generator is in a representation of Eg, which is in fact the
27 as noted above, and it is given by

[R*, R*M] = (D*)nM RN, (2.23)
where (D®)n™ are the generators of Eg in this representation and so obey
[DO‘,Dﬁ}MN = B (D). (2.24)

The two form generators are in the 27 representation and so their commutator with the
generators of Fg is given by

[Ra, R“bM] — (DY) N Ry, (2.25)

This involves the matrix (D) in the way that follows from the fact that if we contract
the indices of a 27 with a 27 we find an Eg invariant. The Fg commutator of the R ig
given by

|:Ra7 Rabcﬂ] — foz,B’yJRabcp/7 (226)

as it is in the adjoint representation while that of the R“b“l[ MN] generator is given by
[Ra’ Rabcd[MN]:| — _(Da)MpRade[PN} _ (Da)NpRade[MP}- (227)

The next commutators of the Fy; algebra to consider are those of the 1-forms which
yield a 2-form and are given by

[Ra,M’Rb,N] — MNP Rab (2.28)

where d™NP is required by the Jacobi identity involving R®, R* and R®V to be an
invariant tensor transforming in the 27®27®27 representation and so it is also a symmetric
tensor. The commutator of a 1-form with a 2-form generator is a 3-form generator and
the Jacobi identities involving R®, R®YN and R%®); imply that this is given in terms of the
(DY) p N matrix as follows:

[Ra’NﬂbcM} = gap(D*)u N R, (2.29)

where g, is the Cartan-Killing metric of Fg. As mentioned above the 4-form generator
is in the 351 representation and as this is the only representation in the anti-symmetric
tensor product of 27 ® 27 it appears on the right-hand side of the commutators of two
2-forms as

[RabM, RCdN] = Rade[MN}. (2.30)
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The commutator of the 1-form with the 3-form also lead to the 4-form, and can be written as

[Ra,P’Rbcd,a:| _ SaP[MN}Rabcd[MN}’ (231)

where S“PIMN] i an invariant tensor. Using
92 (D)™ (D) = ko (2.32)
one can show that the Jacobi identities constrain the invariant tensor S*IMN] to satisfy
SoPIMN] %gm(papﬁ)QPmQ[MNl = —%(DQ)QWdN}PQ. (2.33)
This equation is solved by
SaPIMN] —%Dg[MleQP, (2.34)

and leads to the further identity
1
o (P gBR)[MN M ;N|PR
9o DG SPRI 1:—§5£2 dNIPE, (2.35)

We now consider the Fq; group element g in five dimensions. As in 11 dimensions, we
neglect the contribution of all the other generators and we write g in the form

g =-exp(z"P,) ga 94, (2.36)

where with respect to (R.d) we have also included the scalar contribution g4, and now

ga = exp (AN R exp (gapAZ, o B7)

exp (AN, R1*) exp (AquR™M). (2.37)

ai1a2

We determine the E1; transformations of each of the fields in (R.37) using the same analysis
that was reviewed for the 11-dimensional case at the beginning of this section. Acting with

g((]4) = exp (aMN Rl‘\l/h'\'l'a“) (2.38)

aj...aq

leads to a transformation of the 4-form field

SAMN =alN (2.39)
while acting with
g((]?’) = exp (gagaglmagRal'“%’ﬁ) (2.40)
leads to
(5A3‘1___a3 = ag‘l___%. (2.41)

Indeed one can see from eq. (R.9) that each of these group elements can not lead to ad-
ditional transformations to any of the fields we are considering, that have at most four
indices. The action of

982) = exp (ag/f@ Rﬁ}laz) (2.42)

— 14 —



instead, produces a transformation of the 2-form as well as the 4-form, as can be deduced
from egs. (£.9) and (R.§). Using these equations, together with the commutation relation
of eq. (R-30), the form of these transformations is straightforward to determine, and the
result is

1
MN (M 4N]
5Aa1---a4 - 5 [a1a2” "aza4]
SAM,, =all .. (2.43)

The last transformation we consider is the one generated by
1
g5 = exp (aquRM) (2:44)

which using egs. (B-9) and (P-§) can be seen generating transformations of all the fields.
The result is

SANY 0y = oy PAS 0300S” PIMN] g5 — ia[al,PA%QA%RAM},sdPQTD%RSﬁ SN g5
—ia[ahPA%QA% aIre
0AG a3y = Ofar, A myay DN + %a[al7MAa2,NAa3]7PdMNQD2§P
0Aptay = %a[aLNAaQLPdMNP
0Aa M = Qg M- (2.45)

We now determine from the Maurer-Cartan form the field strengths of all the fields
of which we have determined the E7; transformations. As in the 11-dimensional case, we

only need to consider g4 in eq. (:37), and using egs. (:12) and (B-IJ) one finds

R?\/l[a2 + G;Ozamzag Rgm% + Gll\i/{llj...mRK/h\.I.M +.. ] ’
(2.46)

where the dots correspond to operators with more than four indices, and the G’s are
invariant under the transformations of eqs. (£.39), [2.41]), (B.43) and (R.45), and are given by

g;ldgA = dz* [GM&MRQ’M +GM

naiaz

G,ua,M = 8,u/4a,M

Ghtay = Al ., + %@A[ahNAazLPdMNP
Casas = Asanas — 0u Ao Ay 3 Ay VDG — B, AN Ay D
G s = OuAu oy — iauA[al,PAag,QAag,RAM},SdPQTD%RSaS[MN]
—%8MA[IZMAag,QAa4]7RDj‘$QSO‘R[MN} + %aMAE{@ .
+OuAL, 1yay Aar),pS TN (2.47)

As it is clear from eq. (R.3§), the Cartan forms actually occur as

95" 94" d9ags, (2.48)

— 15—



which means that they are given by
45'G - Ry, (2.49)

where the G’s are given in eq. (B-47). One must also include the Cartan form for the scalars
which is
95" 0ugs- (250)

For example we find for the vector Cartan form
95 OpAa i RM gy = 0, Au Vi RV, (2.51)

where
g;lRa,Mgd) — ‘N/é—wRa’U, (252)

and the latter is just R*M decomposed into the 27 representation of the local subalgebra
USp(8). Here the USp(8) indices 4,5 = 1,...,8 of f/zéw are antisymmetric and traceless,
giving rise to the 27 of USp(8). In terms of the parametrisation g, = e®f” the scalars
Véw are defined by

M a\M
Vij = €xXp (gbaD )ij 9 (2.53)

where we have decomposed the lower index in the 27 of Eg under USp(8). This decompo-
sition under USp(8) reflects the fact that the Cartan forms only transform under the local
subgroup USp(8) and are inert under the global group Fg. Similar considerations apply to
the other Cartan forms. For the case of the 2-form we have

95 Ri19s = Vi RYY,

(2.54)

where V]\Zg are defined in a similar way to eq. (2.53), but now the generators act on the
complex conjugate representation, and therefore the scalars V]f} are the inverse of ‘72?/[ .

In order to obtain massless field equations for the fields, the same arguments that
lead to gauge-invariant equations in eleven dimensions hold here. We thus consider the
completion of Fq1 with the conformal group. This leads to an infinite-dimensional extension
of the symmetries, whose net result is to replace the global parameters a with dA, where
A is a gauge parameter. The corresponding gauge invariant field-strengths result from the
G’s of eq. (R.47) once all the indices are completely antisymmetrised.

One therefore obtains from eq. (B-47) the field strengths

Fab,M = 2G[ab},M

Fé\gc — 3G[]\a4bc]
F, &)cd = 4G([)¢Czbcd]
Fpode = 5G ubwe] (2.55)

which  are invariant under the gauge transformations obtained from
egs. (£:39), (41), (R.43) and (R.49), after having promoted the Fj; parameters to
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local ones according to

g, M = Og\ s
ayy = 20 A
Agpe = 30[aNpy
Agpog = 40/ My - (2.56)

The actual field strengths are multiplied by factors of VJ\Z} or Vzé\/f as explained above for
the Cartan forms.

The unique equations which are invariant under the transformations of the non-linear
realisation above and are Lorentz and USp(8) covariant are

VatiiFpe ~ €abede Vi) Fiip  Vitig Vi Fibea ~ Diy™ €abede <9;1369¢) (2.57)

ikl
The non-linear realisation also possesses local transformations associated with the Cartan
involution invariant subalgebra. The transformations above, which determine the field
strengths, arise from the Borel subalgebra of Fq; with the exception of the local USp(8).
We believe that also requiring invariance under the local transformations will fix uniquely
the duality relations above.

In the next section we will close the supersymmetry algebra of maximal five-
dimensional supergravity in the democratic formulation, that is including fields and dual
fields. This formulation involves the same forms that were considered in this section, and
we will show that, after field redefinitions, the supersymmetry algebra leads to precisely
the same field strengths and the same gauge transformations as predicted by FE11.

3. Supersymmetry algebra of the democratic formulation of D = 5 mass-
less maximal supergravity

In this section we show that the supersymmetry algebra of maximal supergravity in five
dimensions closes on the fields with totally antisymmetric indices predicted by Fi;. We
also show that the resulting gauge algebra is in precise agreement with the one predicted
by F11 that was analysed in the previous section.

The 42 scalars belong to the non-linear realisation of Eg with local subgroup USp(8).
Taking the generators to be in the the fundamental 27 representation of Eg, one can write
the group element as Vj;;, where the indices 7 and j are antisymmetrised fundamental
indices of USp(8) while the lower index M denotes the 27 representation of Eg, like in the
previous section. The justification for this is that the non-linear realisation is invariant
under V' — go V h, where gy € Eg and h € USp(8), and as a result the first index of V
transforms in the fundamental of Eg, while the second index transforms under the local
subgroup USp(8). The decomposition of the 27 of Eg under USp(8) gives the 27 of USp(8),
which implies that the scalars satisfy the constraint Q%V;; = 0, where Q% is the invariant
metric of USp(8), satisfying

QFQy; = —oF. (3.1)
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The inverse scalars are denoted by V2, and they satisfy the relations
y 1

Vi, VVNY = 83 (3.2)

and
Vi, VMR = (5k5l—5l5k) SQUQ“ (3.3)

The USp(8) indices are raised and lowered according to
Vi=V 00 V= Q0. (3.4)

The other fields in the supergravity multiplet are the vierbein e,“, the abelian vectors
Ay in the 27 of Eg, the gravitino 1,; and the spinor x;ji in the 8 and 48 of USp(8)
respectively. Following [, we consider the supersymmetry transformations

de, " = —iEny Y,
, o i B g
5A“M = QZVMijEZQﬁZ + EVMUEJQ’WLXUIC
Vi = VMGka + —= &l —ViatEixm — LVrQIQijEkalm + ﬁVz\ﬂikgl)(j]kz
x/ V2 V2 V2

. 1
5¢ui = Duei +Q,uij€j - 6 upMVj ’7 ’7;16) + 3F,uz/MVg Y Vel

3 ~ 1 ~
_ Y B Mo, _ 1 M L
SXijk = V2Puijue NG M Vi Y ey ZﬂFMuMQ[UVk]l’Y“ €, (3.5)
where
F;wM = 28[“A,,]M, (36)

and P, and @, are defined by
VuVatij + Vara Py = 0.Varij + 2Q " Vs + VamPLli; = 0. (3.7)

We are only considering the bosonic part of the supersymmetry transformation of the
fermions. This is because we are only interested in the terms at lowest order in the fermions.
We use conventions similar to those of [ﬁ], with a mostly minus signature and €gi234 = 1.
The antisymmetrised product of gamma matrices satisfies

nn-1) 1
Y1 pin = (=) meﬂl---,Uan'rH»l---V5’7Vn+1.~-l’5‘ (3.8)

The transformations of eq. (B.§) where shown in [J] to leave the corresponding action
invariant. We take these transformations as the starting point for our algebraic analysis.
In the bosonic sector, the commutator of two such transformations [J,,dc,] closes on all
the local symmetries of the theory, while in the fermionic sector the same algebra closes
only on-shell. We are interested in studying the supersymmetry algebra on the bosons to
lowest order in the fermionic fields. This leads to the corresponding parameters

§u = —iEyyuers (3.9)
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for general coordinate transformations, and
Anr = 2iVarijhel — 4 A (3.10)

for gauge transformations.

We now want to generalise this result by introducing dual forms for the bosonic fields
above. We want to close the supersymmetry algebra on these dual fields to lowest order in
the fermions, using the fact that they are related by duality to the bosonic fields already
introduced. The duality conditions are first order equations, which is consistent with the
fact that the supersymmetry algebra only closes when these duality conditions hold. Given
the fact that the fermions transform to the field strengths of the bosonic fields under su-
persymmetry, and that the algebra closes using the duality relations, the supersymmetry
transformations of the fermions are the ones in eq. (B.§) modulo these duality relations.
Each form only transforms with respect to the gauge parameters of lower rank, which means
that the closure of the algebra on each form does not require the knowledge of the transfor-
mations of the forms of higher rank. This resembles the way these gauge transformations
result from FE1q, as it is clear from the analysis carried out in the previous section.

Proceeding this way, we will determine the supersymmetry and gauge transformations
of the 2-forms, dual to the vectors, and the 3-forms, dual to the scalars. Once these trans-
formations are obtained, one can then determine the 4-forms that supersymmetry allows.
These 4-forms are not propagating, and in the ungauged theory their field-strengths vanish.
We thus determine the number of 4-forms requiring that the supersymmetry algebra closes
using the fact that the field-strengths of these forms vanish. In the next section we will
generalise this result to the gauged case, in which the field-strengths of the 4-forms are
dual to the mass deformations of the theory. One could also determine the 5-forms that su-
persymmetry allows. Although these fields are not propagating and have no field-strength,
they are relevant because they are associated to spacetime-filling branes, that have a crucial
role in orientifold models. We will not determine the 5-forms from supersymmetry in this
section, but appendix A contains the derivation of their gauge transformations from F17.

The method we are using to determine the supersymmetry and gauge transformations
of all the forms is sometimes called democratic formulation of supergravity. In [d] and [R7]
this method was applied to IIB and IIA supergravity respectively. It is important to recall
here that the F1; non-linear realisation is automatically democratic, and it was the analysis
in 6] and 7 that revealed for the first time that the 10-forms predicted by Ej; in ten
dimensions [R4] agree precisely with supersymmetry. At the end of this section we will
compare our results with the results of the previous section, and we will show that the two
perfectly agree.

We start with the 2-forms, and so we close the supersymmetry algebra on the 2-form
B% in the 27 of Eg. The algebra closes using the fact that the 2-forms are related to the
1-forms by a duality transformation. It turns out that this uniquely defines the supersym-
metry and gauge transformations of the 2-forms, up to field redefinitions. We use these field
redefinitions to choose a particular form for the gauge transformation of B% with respect
to the parameter Ajs, which we impose to be of the form (53% ~ANFy,, pd™NP This will
be our general procedure for the rest of this section: we choose the gauge transformation
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of each field to contain only the field strengths of the lower rank fields, and there are no
derivatives acting on the gauge parameters, with the exception of the leading one. In this
basis the gauge transformations of the fields are gauge invariant.

We write down the most general supersymmetry transformation, we compute the com-
mutator of two such transformations and we impose the closure of the algebra. The final
result is that the supersymmetry transformation of B% is

i~ .
Vil &y X + 2dMNP A, NG A, p, (3.11)

V2
where the last term contains the supersymmetry variation of the 1-form. The field strength
of B% is

8By, = 4V} @) —

Gy = 301, By + 3" AN p (3.12)

and it is invariant with respect to the gauge transformations

SAun = OuAyr
0B, = 20,3 — MNP AN Fp. (3.13)

The duality between F' and G reads
1 -
VariGlup = 5€uporViy FY (3.14)

The 1-form gauge parameter generated in the commutator of two supersymmetry
transformations is

DM = 2V M ey, el + & Bl — 2id™NF A, N Vpijébe]. (3.15)
Finally, the invariant symmetric tensor MNP of g satisfies
ATNKG,  ATMPNE L TN, L 4Py g, (3.16)
and similarly for the invariant tensor dyinp with downstairs indices satisfies
Vi VR Qij — AV VE; + 4V Ve + ddunp Vi = 0, (3.17)

which using eq. (B.J) implies
AP dying = 555. (3.18)

We now move to the 3-forms, which are dual to the scalars. We show that the su-

persymmetry algebra closes on the 3-forms C¢, , where a = 1,... 78 denotes the adjoint

Hvps
representation of Eg, provided that their field strength satisfies a duality condition. The

supersymmetry transformation of the 3-form is
2i
V2

- . . 2%
= D« NyrM e Jkl 4+ =
/2 v Vil VNiGE YuwpXx NG

+12D5, N B 6 A —6D5 N Ay 0Bl — 2459 IMNILA L 4 AU NG A p, (3.19)

SCy

prp = 12iDjT4N‘7(?ﬁf\vféj)€i7[MVwi} o Dfo\l/fN‘zé'V[VNklgi’YWPXjkl

21 ~ -
o NyyMysl = ijk
DM Vil VNjEk'V;pr J
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where D,V are the generators of Eg in the 27, satisfying eq. (2:24), and S®PIMN is the
invariant tensor introduced in [R9) and satisfying eqs. (R.34) and (R.3§). The corresponding
field strength,

« a N M N
HMVPO' — 48[ Vpo’] 24D B[UV po’}N 8DM A[NNGVPO'] (320)
is invariant under the gauge transformations
5Cs,, = 301,20, + 2D N Ghy AN + 12D VS E, iy (3.21)

together with the ones of eq. (B.13). The duality relation between the field strength of
eq. (B-20) and the scalars is

Hﬁupcr - D%/[NVMUV]@%;LV,DUTP;]—'M- (322)

We observe that while the 3-forms are in the adjoint of Ejg, the scalars realise Eg non-
linearly, and therefore their number is adj(Es) — adj(USp(8)). This means that there are
adj(USp(8)) 3-forms whose field strengths are identically zero using the duality relation
of eq. (B:27). This can be seen contracting eq. (B-23) with a suitable combination of the
scalars Vjy;;. This is a completely general phenomenon, and was shown for the first time
in the IIB case in [Bg]. The 2-form gauge parameter that appears in the supersymmetry
commutator is

= 42Dj’(/[NV( |k‘VN])€2’7“V€1 §Ch,
+8iD N BMViijebel — 8iD5 N Ay VM ey, el (3.23)

We finally consider the 4-forms. Although these fields are not dual to any of the
propagating fields of five-dimensional supergravity, we proceed in a way analogous to the
previous cases, writing down the most general supersymmetry transformation and requiring
the closure of the algebra. The fact that we are considering a massless theory implies
that the 5-form field strengths vanish identically because of the duality relations, and this
requirement is crucial to guarantee the closure of the supersymmetry algebra. In the next
section we will see that this duality relation is modified, and the 5-form field strengths will
turn out to be dual to the mass deformation parameters.

Supersymmetry implies that the 4-forms belong to the 351 of Eg, which corresponds
to two antisymmetrised upstairs fundamental indices. We therefore denote the 4-forms
with DMN " wwhere the antisymmetrisation of the M and N indices is understood. The

Hvpo
supersymmetry transformation is

SN, = 16V VY ) &y, 00 + fv[ Ve pe
aP[MN] 8 aP[MN
—12903S*"MNICE | 5451 p — AgapS TN A psC)

MSBY) — 249,35 TPINIDIR A p A, ROBY

[uv ™" po] po]
+ (48005 S* NI DR — 72051 aNIPR) B A,p6 A5

+48905 SN D RAST A p Ay Aps Ay . (3.24)

+368
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The commutator closes after requiring that the field strength

MN _ aP[MN] B
Lul/pa'r 56[M l/pUT] 309a 55 [ ]O[/u/pFUT]P
aP[MN B [M ~N]
~59apS* TN Ay pHY L~ 60B),,G 0 (3.25)

vanishes identically. Gauge invariance of this field strength imposes for DMN ~the gauge

uupa
transformations

MN __ MN aP[MN]=0
D e = 40 ANN) + 18905 S PMNIZ ] F 1 p

+90p S PMNIA L ES 4 oan M G

uvpo [ “vpo) (3.26)

and the commutator of two supersymmetry transformations closes on such gauge transfor-
mations. The 3-form gauge parameter arising from the supersymmetry commutator is
AN = =iV VN @yupel + DN, + 6igagS*TMNICE Viijehe]
P[MN B8R [M 7N i
+36igaS° N AL p DYRVE VE &l — 36iB),, Vi &6 . (3.27)
We can now compare these results with the ones of the previous section, which were de-
rived using the F1; algebra. The comparison is performed requiring that the field strengths
of eq. (R.5]) are the same as the ones of egs. (B.6), (B.19), (B.20) and (B.25) up to rescaling.
The field-strengths can always be put in the form that was used in this section up to field
redefinitions, so what we can actually check when we do the comparison are the indepen-
dent coefficients in each field-strength. It is straightforward to notice that the 1-forms that
result from F7; can be chosen to coincide with the 1-forms introduced in this section. For
the other fields, this leads to the identifications

Ay = ZB%
Alvp = D) CAO:VP + éD VB []\;{uApi N
Apivpo = ﬁDuum + 56 Clwe Aol Pgag SN
- GB[ JAp.pAg) RGap DG SPRIMNT, (3.28)
In particular, once all the possible rescalings of the fields are taken into account, there is
one independent coefficient from Hy,,, and two independent coeflicients from L/w por- Lhe

fact that these three coefficients match is therefore non-trivial.
Finally, one can compare the gauge transformations, thus identifying the parameters a

of the previous section with the gauge parameters Ay, 2,{‘% , Epp and A/%I\; of this section.

In eq. (R.50) we have identified the parameters a with dA, where Ay, AM Af, and A/%I\;

are the gauge parameters occurring in the E1; non-linear realisation. It turns out that the

identification of eq. (B.2§) is consistent with eq. (R.50]), and in particular the parameter
Ajs in that equation coincides with the one introduced in this section, while the other
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parameters are

1 1
AL = 8 AN A pd T

4 12
Aa . 1:;04 1DaNBMA 1DaNEMA
,uz/__ﬁ‘—‘,uy_% M uv N+§ M [, N

1 [e%
—EAMA[u’NAV}’PdMNQDQP

1 1
MN __ MN , 1 —a BP[MN] _ = s2[M pN]
Mo = 150 Bn + 155 Sl Aol PIasS 61 n Bud
l 0 a P gBR[MN] 1 a BP[MN]
_ﬁz[uAu,PAp],RgaﬁDQ S + TQAPCMVPQO"BS
I o a P oBRIMN I g a P gBRIMN
+aB[“VAPAp},RgaﬁDQ Sﬁ [ }‘i‘ @B[HVARAM,PQQIBDQ SB | !
1
+%ASA[M,TAV,RAPLPSQP[MN}DngQSTgaB- (3.29)

All these results show that the predictions of Fy; are in perfect agreement with the results
obtained imposing the closure of the supersymmetry algebra.

4. Supersymmetry algebra of the democratic formulation of D = 5 gauged
maximal supergravity

In this section we extend the results of the previous one in order to account for all the pos-
sible massive deformations of the five dimensional supergravity theory. We will show that
the supersymmetry algebra of any five-dimensional gauged maximal supergravity admits
a democratic formulation, in which all the bosonic fields with antisymmetric indices are
introduced together with their magnetic duals. This is the first example of a democratic
formulation of a supergravity theory with a non-abelian gauge symmetry, and this result
can be naturally generalised to any gauged maximal supergravity in any dimension.

We use conventions similar to [R0], where the complete classification of all the gaugings
of maximal five-dimensional supergravity was found. In sections 5 and 6 we will show how
the gauging arises in F1; independently of the results of this section. We will indeed find
that the non-linear realisation reproduces all the results of this section. In order to make
the analogy between the supergravity and the Fq; results more manifest, we use here the
conventions that arise naturally from the Fy; perspective. It is for this reason that some
of the conventions are slightly different from ref. (). The gauge algebra associated to the
higher rank fields was discussed in an independent bottom-up approach in [B§], where the
results of [I9, were extended to higher rank forms. Our result therefore shows that
supersymmetry is compatible with this extension.

We first review the results of [20). In order to describe the gauging of the group
G C Es, one introduces the embedding tensor ©M so that the generators of G are obtained
from the generators t“ of Eg by

XM = @M, (4.1)
The X’s satisfy the commutation relations

(XM XN = fMNp X P, (4.2)
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where fMNp are the structure constants of the gauge group. From eqgs. (1) and ([£3) it
follows that
ooy v, = M pel. (4.3)

The embedding tensor is invariant under the gauge group G, and using eq. ([L1]) this
corresponds to the condition that the Fjg transformation of © vanishes when contracted
with ©. This results in the equation

oM (—f“ﬁ,y@fﬁV + DfiN@ﬁ) —0, (4.4)
and comparing this equation with ([.3) one finds
xprel = Mol (4.5)

where XJI\D/IN are given by
XMN — @M pan, (4.6)

Eq. (5) shows that X}\)/IN coincides with the structure constant of the gauge group up to
terms that vanish when contracted with the embedding tensor. It can be shown that
such terms are symmetric in M and N, and therefore one can write

XpIN = Ny (4.7)
while the symmetric part of X can be written as
XN = W qd N, (4.8)
where Wy is antisymmetric and satisfies the conditions
WunOL =0 (4.9)

and
XN Won = 0. (4.10)

Eq. (f.§) defines Wyn. The normalisation in eq. (1.§) differs from the one in [R(], and it is
chosen because it arises naturally from the Fy; analysis, as will become clear in the next
section. The constraints that the embedding tensor satisfies restrict it to belong to the 351
of Eg. The same is true for Wyn, because the 351 is indeed the irreducible representation
corresponding to two fundamental antisymmetric lower indices of Fg. Eq. ([.10) guarantees
that Wiy is invariant under the action of the gauge group. The antisymmetric part of
XII\D/IN is related to Wyn by

XIINT = _ggMQSgPRT gy o W (4.11)

The scalars, that in the ungauged theory describe the non-linear realisation of Eg with
local subgroup USp(8), are like in the previous section denoted by Visi;, antisymmetric
and traceless with respect to the fundamental USp(8) indices i and j. In this notation, the
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gauging of a subgroup of Eg corresponds to a minimal coupling for the scalars Vir;;, and
taking into account eq. ([l.f) one writes the condition

OpVirij + 2Qui"Vary) + 9X0 AunVpij + VPl = 0. (4.12)

This equation is the covariantisation of eq. (B.7) with respect to the gauge transformation
— NP .

OVirij = —gXyyp ANVPz] (4.13)

of the scalars.

The variation of the scalars under gauge transformations identifies how all the covariant
quantities transform. In particular, a generic covariant object AM with upstairs indices
transforms under the gauge transformation as

SAM = gXIMA N AT (4.14)
while an object with downstairs indices transforms according to
SAy = —g XN ANAp. (4.15)

For the gauging of a subgroup G of Fg to occur, a subset of the vectors in the 27 of Fjg
have to collect it the adjoint of GG, while the rest of the vectors are gauged away by means
of a Higgs mechanism that gives a mass to the 2-forms. More precisely, one requires that
the gauge transformation of the vector becomes the non-abelian one when contracted with
the embedding tensor. One thus writes the gauge transformation of the vectors as

NP
5AHM = 8;LAM — ng[w }ANA,uP + QWMNE‘L]Y, (4.16)
where Zﬁ/f are the gauge parameters of the 2-forms introduced in the previous section.
Contracting eq. ([.16) with ©A, the last term vanishes because of eq. ([.9), and one is left
with the non-abelian gauge transformation of the vector projected by the embedding tensor.

(]

From eq. ({.16) one can write the field strength
Funr = 20, Ay + 9X 5 P Aun Avp — gWanBY, (4.17)

that is gauge invariant under Ef‘[f transformations at order g. The normalisation of the
last term in eq. () is chosen in such a way that F),, s varies under Aj; transformations

as in eq. (L15) at order g. Imposing that F transforms covariantly at order g2 partially
o
will find in the following. The strategy of ref. [R(] was to consider the 2-forms always

fixes the order g gauge transformation of Bj;], in a way which is consistent with what we
contracted with WyN, because WMNB/JXV is the object that appears in the lagrangian.
They therefore obtain the part of the order g transformations of the 2-forms which does
not vanish when contracted with Wyn. As we will see, our analysis instead will determine
the gauge transformations of the 2-forms completely, and we will also determine the full
gauge transformations of the 3-forms dual to the scalars.

In the gauged theory, the supersymmetry transformations of the bosons remains un-
changed, while the transformations of the fermions are modified with respect to eq. (B.5)
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because of two reasons. First of all, one assumes that the field strengths and the covari-
ant derivatives that occur in the supersymmetry transformations of the fermions are now
covariant with respect to the gauge transformations. This means that the field-strength
Fuuar of the vectors is now defined as in eq. (4.17), and Qm-j and Py, are now defined
by eq. (E19). Secondly, explicit mass terms appear in the supersymmetry variation of the
fermions. These terms are obtained requiring that the corresponding action is supersym-
metric, and one can show that the results of 0] can be written in a way that makes the
scalar dependence more explicit. The result is

1 R
i = ggWMNVZ-yVN]kwek (4.18)
for the gravitino, and
5,Xijk = 3\/§gWMN‘7[£‘]-J‘7k]]\;€l — ﬁgWMNQ[iij]}V”‘z%em (4.19)

for the spinor, where we denote with &’ the part of the supersymmetry transformations
of the fermions that contain explicit mass terms. Expressing these mass deformations
explicitly in terms of Wy and the scalars will turn out to be crucial in the second part
of this section, where we will close the supersymmetry algebra on the 2-forms and the 3-
forms dual to the vectors and the scalars respectively, and where we will derive the duality
relation between the 5-form field strengths and the mass parameters.

As in the previous section, we are interested in studying the supersymmetry algebra.
Changing the supersymmetry transformations of the fermions results in additional terms
in the commutators of two supersymmetry transformations [0, , d,] on the bosons. In par-
ticular, the commutator of two supersymmetry transformations on the scalars produces the
gauge transformation of eq. ([.13), while on the vectors it produces the gauge transforma-
tion of eq. ([E16), where the parameters Ay and X! are given by egs. (B10) and (B-13).
All the assumptions in the above construction, and in particular eqs. ([.I4) and ({.I7),
are very natural, however the justification for them is that they lead to a supersymmetry
algebra which closes and leads to an invariant action. A more pedagogical but more tech-
nically difficult approach would be to add a single deformation term, like the first term of
order g in eq. (4.16)), and demand closure of the supersymmetry algebra by adding terms.
One would then recover the same results.

In the above, we have reviewed ref. [P0 showing that the supersymmetry algebra of
five-dimensional gauged maximal supergravity closes on the scalars and the vectors. In the
rest of this section we will show how the supersymmetry algebra closes on the 2-forms dual
to the vectors, and on the 3-forms dual to the scalars. This proves that the supersymmetry
algebra of gauged maximal supergravities admits a democratic formulation, in which all
the fields are introduced together with their magnetic duals and the algebra closes using
the duality relations. As in the previous section, the analysis is carried out at lowest
order in the fermions, and it generalises the results of the previous section to the case of
five-dimensional gauged supergravity.

We start considering the 2-forms B%. We determine the gauge transformation of B%
requiring that the duality condition of eq. (B.14)) is gauge invariant. This fixes the gauge
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transformation of the field-strength Gﬁ/fup to be

50%,) = gXEMANijVp. (4.20)

% and its field

strength uniquely. In order to facilitate the comparison with the Fq1 results, in this section

It turns out that this condition determines the gauge transformation of B

we always keep the order of the coupling constant g explicit. This means that we write
the gauge transformations and the field strengths always in terms of the fields and their
derivatives, without using the field-strengths of the lower rank fields, as we did instead in
the previous section. We thus write the final result as

4
SBM = 20, 5M — 2dMNPA oy A — gng[DMN}EPAu]N

v] [
2 _(MN 2 _[MN 4 _(MN
+§gXI(3 )Ef;A,,}N—ggX]L }ANBf,,—FggXI(D 'AnBP,
4 L (MQ) RNP 2 [MQ] RNP
—39Xp TdTTANAY pAy g+ 59 XE AT ANAY pAL 0
1

Me—
—I-Eg@a :Zly (421)
for the gauge variation of the 2-form and

GM,, = 30, BM) + 6dMP A, 50, Ay p + 20X N BE Ay

wvp el
(MN) HP [NP] ;RQM
_4gXP B[HVAP}N + QQXR dRQ A[MNAVvPAPLQ
L M
_ég@a Cp (4.22)
for its field strength. It is important to observe that the 2-form varies with respect to the
parameter =7, that is the gauge parameter of the 3-form C}, , that we introduced in the

previous section, and that this variation contains the embedding tensor. This has to be

'~

compared with eq. (J.16), which shows that the 1-form varies with respect to the gauge
M

uvp
satisfies eq. ([.2(0), and requiring that this is true also at order ¢g? partially determines the

parameter of the 2-form by a term containing Wyn. The variation of G7, at order g
gauge transformation of the 3-form in a way that is consistent with what we will find in
the following. The gauge transformation of B% of eq. ({.2]) is also consistent with the
covariance of F),, ys at order gz.

The supersymmetry transformation of B% is given by eq. (B-1])), and using the gauged
supersymmetry transformations of the fermions one can show that the supersymmetry

algebra closes on B%, generating the gauge transformation of eq. (£.21) with the correct

parameters given in egs. (B.10), (B.19) and (B-23), and using the duality relation of eq. (B-14)
where the field strength of the 2-form is as in eq. (.22). This proves that the gauge

transformations we find are completely consistent with the supersymmetry algebra.

We now consider the 3-forms C'%,  that are dual to the scalars. The duality relation

pvp
of eq. (B.24) implies that the gauge transformation of the 4-form field strength Hp, , is
SH, e = 91O Aar H, o (4.23)
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Starting from the ungauged result of eq. (B.20), it turn out that imposing eq. ({.23) at
order g completely determines HS, . as well as the gauge transformation of the 3-form

nvpo
Civp- The final result is
«a —a a N M a Ny M
5CHVP = 36[H:‘Vp} + 6DM a[‘uBVp}AN + 24DM E[“ 8VAp}N
+12D3 N dMTA,p0, Ao AN + [3gDN T Wen — 99D5, " Wen] S B
3 «a N 1 aNqP 9 «a N 1 aNqQP| =
- [ng ﬁ'y@ﬁ + ZQDP @7} ANOZVp—i_ [ng ﬁ'y@ﬁ - ZQDP @’y ‘:‘FMVA[)}N

3 3 3 1
+ [ — 59D XN + SgDG  X§Y — gDV XG® — S9DEV X

]

+ [gD§ N XYP 4+ 39D N XEM — 99 DM X TN AWAyng

+ [~49D3, XN 1 8903 SXVdT) Ay Ay, pALQA, 5

9 aPyNS 3 1 aP SN Q

+12gD5% Y Wun Sy M DG RASTAs Ay, Av r Ay p + gD T WenAMY  (4.24)

for the gauge transformation of the 3-form and

Hp,y oy = 40,C00 — 48D N B, 0,Aqy — 24D5 N Ayun 0, B,
—48D§ N dMPRAY N AL pO, A g + 189Dgf4PWpNB[AjVB;Yﬂ +3gf°°, 0% AunCy
+gD3 O AypCl + |~ 189D XL — 189 DgN X
—6gDEN XS’ | App An B,
+12gX MRS DA A, \ AL N Ay p A g — 9D5 T Wen DN, (4.25)

for its field-strength. Once again, in order to prove gauge covariance it is crucial to impose
that the 3-form transforms with respect to the gauge parameter of the 4-form, as the last
term in eq. (f.24)) shows. We also made use of the identity

2,08 — DpROL = 4D Wengg, SPUMN, (4.26)

which shows that the embedding tensor and WyN are related by the invariant tensor

SaPIMN] = and thus belong to the same representation of Fg. Using eq. (R.34) and the

invariance of dM™F one can indeed show that this identity leads to the linear constraint

of [PQ], which is needed to prove that the embedding tensor belongs to the 351 of Eg. The

variation of Cf,, at order g is such that the 3-form field strength Gﬂ/;’/p of eq. ({.22) is

covariant at order g2.

The supersymmetry transformation of Cj,, is given in eq. (B.19), and using the gauged

supersymmetry transformations of the fermions one can compute the commutator of two

supersymmetry transformations on this field at lowest order in the fermions. It turns out

that the supersymmetry algebra closes on C},,, generating the gauge transformation of

eq. ([.24) where the parameters are as in egs. (B.1(), (B-19), (8.23), and (B-27). Like in the
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massless case, the supersymmetry algebra closes imposing the duality relation of eq. (B.29)
where now the field strength of the 3-form is as in eq. ({.25). Therefore the supersymmetry
algebra of gauged maximal supergravity in five dimensions closes on the 2-forms and the
3-forms dual the non-abelian vectors and the scalars respectively. One could continue
this analysis, and show that the supersymmetry algebra closes on the 4-forms, provided
that their field-strengths are related by duality to the mass deformation parameters of the
gauged theory. We leave this as an open project. As it is clear from the previous results,
in order to determine the gauge transformation of the 4-forms we would need to know how
the 5-forms transform at zeroth order in g. It would be interesting to perform this analysis,
and compare the results with the ones of appendix A, where the gauge transformations of

the 5-forms at zeroth order in g, that is in the massless theory, are computed from Fjq.
DMN

nvpo
at order g using them. However,

We do not determine the gauge transformation of the 4-forms

LMN
uvpoT

we can still derive the duality relation of these field strengths with the mass deformation

at order g, and
so we can not determine the 5-form field strengths

parameters. The supersymmetry transformation of the 4-forms is given in eq. (B.24).
Using the gauged supersymmetry transformations of the fermions one can compute the
supersymmetry commutator, and from that one can select the term proportional to the
general coordinate transformation parameter given in eq. (B.9). The relevant terms are the
ones that arise from performing the variations of egs. (.1§) and (.19) in eq. (B.9). This
results in the contribution

giWpg [S‘ZECMVMR]' Vle‘yi% + 8‘7igM‘7leV] vPikyQl
(M
J

+4‘~/i ijy] ‘N/Pkl‘N/Qjm} (Eé'yuupcregn - Eil’?/,uupoegb) (4.27)

MN
urpo
eq. ({27) the part that is proportional to the general coordinate transformation parameter

to the supersymmetry commutator on D We have to select out of the terms in
given in eq. (B.9), which means that we have to select the part of the fermionic bilinear that
is proportional to . This term has to produce the general coordinate transformations

of the fields D/%]p\{f’ and for this to occur the duality relation

L%]Xar = 9€uvpor WpPQ [%%VJWPUVQM B 2{7@.%‘71\7’?]-{71)%{7@]'] (4.28)

must hold. Here L%gm are the 5-form field-strengths of the gauged theory, transforming
covariantly under gauge transformations and whose zeroth order in g is given in (B.29).
The right-hand side of this duality relation is proportional to the scalar potential of [R(].
In the first version of this paper the second term in eq. (|1.2§) was missing. The fact that
there was something odd in that equation was pointed out in [ijj. Taking the curl of the
duality relation of eq. (B.29) and using eq. ([.2§) one obtains the second order equation
for the scalars, which means that the scalar potential is encoded in this chain of first order
duality relations. The duality relation of eq. ({.2§) follows directly from the terms in the
supersymmetry transformation of the fermions containing explicit mass terms, which are
given in eqs. (J.1§) and ([.19). These equations indeed show that W,y should be thought

as the mass deformation parameter, and therefore it is natural to expect that the 5-form

field strength is related to Wi,y by duality, in agreement with our results.
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To conclude this section, we want to write the gauge transformations of the gauged
theory in terms of the Fj; fields and the FEj; parameters of section 2. We recall that
from F7; the gauge transformations of the five-dimensional fields in the massless the-
ory are simply obtained acting on the group element of eq. (R.37) with the elements of

eqs. (2:39), (2:40), (2-49) and (P.44) and identifying the E7; parameters a with the gauge
parameters A as in eq. (R.5(). Performing the redefinitions of the fields and the parameters

given in eq. (B-2§) and (B.29) one derives the gauge transformations for the fields in the
massless theory as obtained in the previous section using supersymmetry. In this section we
have shown how these gauge transformations are modified in the gauged theory using su-
persymmetry. The fact that all the transformations are first order in g implies that we can
use the zeroth order field and parameter redefinitions as obtained in the previous section on
these gauge transformations, to derive their form in the Fy; basis. This is consistent with
the fact that Fqq gives corrections only at order g, as will be shown in the next section.
We thus perform the redefinitions of the fields and the parameters given in eq. (B.2§)
and (B.29) on the gauge transformations obtained in this section, in order to the determine
their form in terms of the E1; fields and parameters. We are only interested in the first
order in g, because the E71; analysis of the massless theory, i.e. at zeroth order in g, has
already been performed in section 2. It turns out that performing these redefinitions, the

transformations of eqs. ({.16), (.21]) and (4.24) drastically simplify, and the final result is

OgAun = —gApOL D™ Ay N + dgWai AL
5gAM = gApOE DM AN, + 2gWiqAZdMNP A, p — 3gOMAS,

v (1w
5gAS,, = —gApOL f*7 AL, + dgWhp Al DM AT
2
+§gWMRAﬁdMNQD%PA,,’NAPLP — 169D%PWPNAM}E, (4.29)

where 0, denotes the part of the gauge transformation which is first order in g, and the
full results are recovered adding the zeroth order transformations of eqgs. (2.41), (2.49)
and (R.49), where the gauge parameters are given in eq. (R.5(). Even the reader who
is unfamiliar with F1; might get the feeling that there is some hidden structure which is
responsible for this drastic simplification. The rest of this paper will be devoted to showing
how the transformations of eq. (4.29) result from FEj;. Here we just want to conclude

pointing the reader’s attention to the similarity between the gauge transformations of

eq. (£:29) and the Ey; transformations of eqs. (R.41)), (R.43) and (R.45).

5. Generalised spacetime and the E;; dynamics of gauged supergravities

5.1 Generalised spacetime

When the Fy; symmetry was first conjectured [f]] the momentum operator P, was included
in the group element in order to encode space-time into the non-linear realisation. It was
realised that using just this single generator does not respect the E1; symmetry and thus the
momentum operator should be part of some larger multiplet. The correct procedure [B1],
found a few years later, is to introduce a set of generators that transform as a linear
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representation of Fq1 which includes the spacetime translations as its first component. This
representation, denoted [ here although [; in the previous literature, is the fundamental
representation of E7; associated with the node labelled 1. The next components in the
I multiplet in order of increasing level are an anti-symmetric two form Z%%  an anti-
symmetric 5-form Z%-% _ which can be identified with the the central charges in the
eleven dimensional supersymmetry algebra, then Z% 97 associated with the Taub-Nut
solution followed by an infinite number of components at higher levels.

The dynamics is specified to be a non-linear realisation based on the semi-direct prod-
uct of the two groups F11 and a group whose elements are those of [, and we write this as
FE11 ®s 1 [Bl]; its precise formulation can be found in [Bl] and will also be discussed below.
The construction of this non-linear realisation involves a group element that contains the
generators of the Borel sub-algebra of Fy1, once one has taken account of the local sub-
algebra, and those of [. The coefficients of the latter include z%, the usual coordinate of
space-time but also the coordinates x4,4, and x4, o5 corresponding to Z'%? and Z% -9
respectively as well as an infinite number of higher level coordinates all of which can be
thought of as constituting a generalised space-time. The group element can be written in

the generic form

g= ew“Pa+ma1a2Z“1“2+ma1‘.‘a5Z“1“'“5+...eA-R (5‘1)
where R denotes the generators of the Borel sub-algebra of F1; and A are the corresponding
fields that depend in general on the generalised space-time. In the past literature the non-
linear realisation has been constructed keeping only the usual coordinate of space-time x“.
One of the most pressing problems in the understanding of the Fq; conjecture has been to
understand the precise role that the generalised space-time plays in the dynamics. In this
section we will show that it plays a central role in the formulation of the dynamics of the
gauged supergravity theories thus providing strong evidence for the role of the [ multiplet
in the non-linear realisation and so in M theory.

In fact the [ multiplet has a physical interpretation; it is just the multiplet of brane
charges [B9]. This is clearly true at the lowest levels where on finds in order of ascending
level the charge of the point particle, the two brane charge, the five brane charge. The
dynamics of a p brane is described by an action which contains a Wess-Zumino term whose
leading term is a coupling between a rank p 4+ 1 gauge field which is one of the non-trivial
background fields and a conserved current. This current has a corresponding charge which
is the brane charge and to which the gauge field couples. As such one expects every field
in the Fq1 non-linear realisation to have a corresponding charge in the [ multiplet. Indeed
this is the case [BJ); the fields in the non-linear realisation are in one to one correspondence
with the generators of the Borel sub-algebra of F1; and if one deletes any of the space-time
from any one of these generators one finds an element in the [ representation that has the
resulting structure of space-time indices. From this view point introducing the generalised
coordinates corresponds to using coordinates for measuring space-time using all possible
branes and not just those associated with the point particle.

As explained above by choosing different Ap_;, or SL(D,R) sub-algebras of Fj; one
identifies different gravity lines and so theories in different dimensions. In this construction
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one automatically finds the duality groups long known to be symmetries of the correspond-
ing maximal supergravity theories, for example F7 in four dimensions [ and SL(2,R) for
1B supergravity [fJ]. Technically this construction corresponds to decomposing the adjoint
representation of Fqp into those of Ap_; direct product with the duality group. The gen-
erators of F11, and so the fields, with totally anti-symmetric indices in the D dimensions
were only rather recently computed. It was found that they lead to a totally democratic
formulation of the propagating forms together with some forms that have D — 1 and D
indices. The former correspond to the gauged supergravities constructed and one finds a
precise match [R9, with the pattern of gauged supergravities derived using supersym-
metry over very many years. Thus one finds that Fy; provides a unified framework for all
the maximal supergravity theories many of which had no higher dimensional origin within
the context of traditional supergravity theories.

When considering the non-linear realisation Fq1 ® [ one must also carry out the de-
composition of the [ multiplet Ap_; direct product with the duality group as well as that
for the adjoint representation of Fq; in order to determine the theory that results in D
dimensions. In fact this calculation was carried out a few years ago B3, 4] and the re-
sults for the members of the multiplet that are forms, that is possess just a set of totally
antisymmetrised indices, are summarised in table 1 [B3, B4]. Comparing with the set of
generators of E; table 5 of reference [2J] one sees the above discussed correspondence
between charges and fields. The results can be compared with earlier calculations [B that
assumed U duality symmetries and used the known U duality transformation rules to com-
pute some of the multiplets of brane charges from a known brane charge. It was observed
that the resulting brane charges were generically more numerous than the central charges
in the corresponding supersymmetry and that many of the charges had a rather exotic
structure that did not arise from a reduction of an eleven or ten dimensional supergravity
theory. The decomposition of the [ multiplet gives precise agreement with these results
as can be seen at a glance by comparing the results of table 1 with tables 4.11 and 4.14
of the third paper in reference BY]. Furthermore, the [ multiplet provides a single unify-
ing structure for all the charges found in lower dimensions many of which have no higher
dimensional origin within the context of traditional supergravity theories. Thus there is
substantial evidence for the relevance of the [ multiplet in M theory, however, not so far
for the generalised space-time that results from it in the non-linear realisation. It is the
purpose of this section to rectify this short coming.

As table 1 shows the members of the [ multiplet in five dimensions, classified according
to Eg multiplets and in order of increasing rank of the totally anti-symmetrised space-time
indices, are given by [BJ

P, ZN, 2%, Z0we gzome  gudees  gaeaN (5.2)

As their indices imply these transform according to the 1, 27, 27, adjoint i.e. 78, 351 and
27 of Eg respectively. As already discussed there is a relation between the members of
the [ multiplet and the fields in the adjoint representation of F11, namely if one deletes a
spacetime index from the latter one finds a corresponding charge in the former.
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D G Z Za Za1a2 Zal...ag Zal...a4 Zal...a5 Zal...ag
(8,1) | (6,2)
8 | SL(3,R) x SL(2,R) | (3,2) | (3,1) | (1,2) | (3,1) | (3,2) | (1,3) | (3,2)
(1,1) | (3,2)
24 40
7 SL(5,R) 10 5 5 10 15
1 10
- 45 144
16 10 16 i
6 SO(5,5) 1 6
. 78 351
5 Eg(+6) 27 27 1 >
133 | 912
4 E 56
T(+7) 1 56
3875
3 Eg(4g) 248 | 248
1

Table 1: Table giving the representations of the symmetry group G of the form charges in the [
multiplet up to and including rank D — 2 in D dimensions, in 8 dimensions and below [@, @]

It is instructive to derive the low level members of the [ multiplet in five dimensions
from that in eleven dimensions. In eleven dimensions the [ multiplet has the following
content [B1]]

. 78142, r7G1...45. r7G1...a7,b r741...48. r7@1...a8,b1b2b3 r7a1...49,(b¢) rra1...49,b1b2
Pdvz aZ aZ 7Z aZ 7Z ( )7Z )

41..010,0 r781...411 . 7a1...09,01...b4,¢ r7@1...48,b1...b6 r7@1...49,b1...b5
Za-and 7 L g0 o bLbie garasbibe gandgbibs

where a = 1,...,11. To find the content of the five dimensional theory we split the indices
range of a etc into a = a,a =1,...,5and a =i+ 5,a = 6,...,11. The latter transform
under SL(6). If we consider scalars we find at low levels P;, Z%, Z% % which are the 6, 15
and 6 representations of SL(6,R). These collect up into the 27 of Eg, i.e. Z"V. For one form
elements one finds Z%, Z%i-_ 7a%i-6:J which belong to the 6, 15 and 6 representations of
SL(6,R) which collect up into the 27 representation of Eg i.e Z%. For the two form we find

Zab(l), Zabil...i3(20)7Zabi1...i5,j(35 @ 1)’ Zabil---i6(1)7Zab,il---i:3(20)7Zabil---iG,jl---jG(l) (53)

where the number in brackets is the SL(6,R) representation. All these package up into
the T8 & 1 of Eg, i.e. 2% and Z%%, The latter charge is the Taub-Nut charge and
will play no role in what follows. As such we set it to zero.

This demonstrates how the space-time generators P; which occur in the dimensional
reduction of conventional supergravity theories are augmented by the higher members of the
[ multiplet to form Eg multiplets. In what follows we will see how part of these multiplets
play a crucial role in the construction of the gauged supergravity theories.

— 33 —



We now define in more detail what we mean by the semi-direct product F11 ®s[ where [
is an algebra whose generators are in one to one relation with the [ multiplet. By definition
the commutation relations between the generators R of E1; and Z of [ are specified by to
be of the form

R,Z] =U(R)Z (5.4)
where U(R) is the action of the generator R on the generators Z viewed as a representation
of E11. Applying this to the Fg sub-algebra we find the commutators

[R*, P,] =0, [RY, ZM] = ZN(D )M, [R*, Z§] = —(D*)NM 25,
(5.5)
[Ra,Zalaga] — faﬁ,YZalaT/, [Ra’ 21%11\7[2“3] — —(DQ)NRZ?{KZ[ZG:S _ (Da)MRZ{\II}gzag ) (56)
One can readily verify that these commutators do satisfy the Jacobi identities found by

taking the commutator with another generator of Fjg.
The commutators of E1; with the space-time translations can only be of the form

(RN, p)] = 6¢ 27, [Ru%2 p,] = 25, 7%, (5.7)
[Rere2sse, By] = 33" 7020, Ry, B = 45" 20 (5.8)

The coefficients on the right-hand side are chosen as above and this fixes the normalisation
of the generators that appear on this side of the commutation relations.

Since all the elements of the [ representation can be obtained by taking the commu-
tators of the Fy; generators with P,, the commutators of the remaining generators of E1;
with those of the [ representation can found by using the Jacobi identities in conjunction
with equations (p.9), (B.6), (6.7) and (b.§) as well as E1; commutators themselves of equa-
tions (2.29), (2:23) and (2:23)-(R-31)). In particular, the Jacobi identity involving P,, R®™

and RV implies the relation

[RM ZN] = —aMNP Zg, (5.9)

Similarly one finds that
[RCLM, Zf’v} = (Do) Mz, [RG92 ZN] = —(Da)y N 292, (5.10)
(R, 78] = Zgje, (R, Zesese] = —geMIRS) gomes - (5.11)
[Rovezaser ZM] = _ qaMIRS] 7ayazas, (5.12)

5.2 The map from F;; into generalised spacetime

Essential for the construction of the dynamics of the gauged supergravities is the observa-
tion that there generically exists a linear map denoted ¥ from Fy; into the [ representation
which possesses the following four properties (we will give the discussion such that it is
valid in any dimension before implementing it in detail for the five dimensional case):

A Let us denote the image of this map to be k, i.e. ¥(E1;) = k. As k is part of the
representation [ of Ey; it inherits an action of Fq; on it. While this will not always
act on elements of k so as to remain in k& we demand that the subspace k does carry
the adjoint representation of a sub-algebra Fi; of Fqy.
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B We demand that the map ¥ be invariant under the action of F}y, that is
Y(U(T)R) = U(T)¥(R) (5.13)

where U(T) is the action of the generator T' € Fj; on the appropriate space and R is
any generator of Fqi.

C The map ¥ preserves the space-time nature of the fields, that is the action of the map
does not change the number of Lorentz indices the element carries.

D The sub-algebra Fj; is contained in the Borel sub-algebra of E1; together with all of
G, the internal symmetry algebra which is Fg for the case of five dimensions.

We now analyse the consequences of these requirements. Let us label the generic elements
of k and Fi; by V and T respectively. Since the adjoint representation of any group is
unique it follows from A that the map V¥ identifies the subspace k of [ in a one to one
manner with the sub-algebra Fy; of Eq; in a way that is preserved by (requirement B) the
action of Fy;. To be more precise given any 1) € Fy it acts on any T € F; according to
the adjoint representation as T} — [T1, 7] while on k the element T} acts as V — U(T71)V.
Given a labeling of the elements of F}; we may use the correspondence that ¥ provides to
similarly label the elements of k. Indeed, we have a one to one correspondence between
V € kand T € Fy; given by U(T) = V such that

U(M)V = U(T)¥(T) = ¥ (U(T)T) = ¥([T1,T1) (5.14)

for any 77 € Fii. It follows that the map ¥ induces a map, denoted U, of Eyq into itself
whose image is the sub-algebra Fj; on which it is the identity map.

If we decompose the adjoint representation of Fq; into representations of Fi; then the
map Y identifies the sub-algebra Fi; with the subspace k of [ as described above and maps
to zero all the other representations in £1;. Similarly if we decompose the representation
I of Fqy into representations of Fj; then only the adjoint representation of Fijp is in the
image of ¥ and all the other representations are in the complement of k. We may write

En=F1®F; and |=k@kt (5.15)

where Fﬁ contains all the representations of Fj; contained in Fy; other than the adjoint
and similarly for k. Then ¥ maps as W(Fy;) = k and W(Fj;j) = 0. We will label the generic
elements of F1; and L as R and [, those of F1; and k as T and V, as was done above, and
those of Fij and k* as S and U respectively. Clearly, Fi; acts on Fij to give Fjj and on kt
to give k*. Also the action of Fi; on Fi; and k must contain all of Fi; and k™ respectively
as both the adjoint representation of F711 and the representation [ are irreducible.
Requirement C means that the map W preserves the sub-algebra of Fy; associated
with gravity, that is A4 in the case of five dimensions, and so it maps a generator of Ei;
with a given set of space-time indices to an element of k with the same set of space-time
indices or if it is inside Fjj to zero. As a result, it is useful to subdivide all the above
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spaces according to the number of space-time indices their elements possess and indicate
this with a suitable superscript, for example ES) = Fg, 10 = {ZN} for five dimensions.

In this paper we will adopt requirement D, but given that the map ¥ can be non-zero
on parts of the Borel sub-algebra of Fg it natural to expect that Fj; could include other
negative root generators with non-trivial Lorentz indices.

Clearly, to find such a map one must find elements of E1; and [ that have the same
Lorentz index structure. Examining the formulation of E7; suitable to eleven dimensions,
that is with an Ajq sub-algebra, of equation (R.I) and that of the [ mentioned at the
beginning of this section we find that at low levels there are no such objects and so no
map V¥ is possible. However, once one considers lower dimensions one finds that there
are matching elements in Fq; and [ and that a map with all the above properties can be
constructed. We now concentrate on the case of five dimensions, but it is straightforward
to generalise these considerations to other dimensions.

We will now construct such a map from the Eq; generators of equation (R.21]) into the
elements of [ of equation (f.9). Using requirement C and the fact that there is only one
object in [ with any space-time indices that are lowered, namely P,, but no such objects
in the Borel sub-algebra of Ejj, it follows that P, must be in k. Hence, we may write
k(=DL = {P,}. For the elements with no space-time indices we have a map from EQ) = Fg
to 10 = {ZN}, the 27 representation of Eg, and we define the elements of Flol and £ to
be given by

FO — {1V .7V = eNRrY, kO = (VvV} (5.16)

respectively, the elements TV and V¥ of the two subspaces being in the one to one
correspondence

v (0 R*) = VN, (5.17)

Here ©Y is a constant tensor which enters the theory as the definition of the map ¥ on the
space of elements with no space-time indices, i.e. Fl(?). In fact, the TV cannot be linearly
independent as this would imply that the V¥ were also linearly independent and so would
span all of 1 it rather describes the way Fl(?) is embedded in Fg. The complement is
given by

PR = {5 eEY: (S0)RrY) = 0} (5.18)

If we write S = c,R® the orthogonality conditions it implies that ©Yc* = 0 where
= gof cg, and g is the Cartan-Killing metric.

We can now find the restrictions placed on © by the above requirements. Taking
the commutator of two elements of Fl(?), namely 7™ = OMR* and TV = ©Y R and
demanding that Fl(?) is a sub-algebra (requirement A) with structure constants fMNp,
implies that

[TM,7V] = [0} R, O R®| = 0M 6} f* k7 = fINTP = PINLOPRT (5.19)

and so we conclude that
ooy fr, = M pel (5.20)
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On the other hand demanding that the map ¥ is invariant under Fl(?) transformations
when acting on Fl(?) (requirement B) we find, using equations (5.5), (.14) and (F.19), that

v(u("TN) = 9 (7™, TV]) = O (MNpT?) (5.21)
= U (T")o(1TV)=u (T")VN=0) V" (D) N=XpNu(T") (5.22)

where we recall that by definition XMN = @M (D) pN. Hence, we find that
ANpel = xpNer (5.23)

In deriving this equation we have taken V!V to transform under Fl(?) like ZN. This is
because V'V can be obtained from the Z™’s by a projection in which the leading term is Z%.

Let us now turn to the construction of the map ¥ on elements with one upper space-
time index, that is the map ¥ from Eﬁ) = {R*N} into the space I(!) = {Z%}. Tt maps the
27 into the 27 representation of Eg. We define this map by requiring the elements of Fl(ll)
and k4 to be given by

P = T : Ty = WanR™}, kY = (Vi) (5.24)
where the elements are in one to one correspondence
U (WynR™Y) = Vi (5.25)

The constant tensor Wy which defines the map is required to be an anti-symmetric tensor.
We find the complement of Fl(ll) to be

PPt = {5V e BlY : wans™Y = 0} (5.26)
where S*N = LN pR*" with constant L p’s, are a set of generators that are not linearly
independent. They are in the orthogonal subspace in the sense that (T',5) = Y Ny ThS bN —
0 and LY p can be viewed as projectors.

We can find the spaces k(@ and k(©+ by acting with Fl(ll) on P, the lowest component
of the [ multiplet. Using equation (b.7), we note that for T'§, € Fl(ll) we find that

[T, By = [Wan RN, By] = SpWanZY (5.27)

while if 5% € F{J" then
[S°N. p,] = spv Y, (5.28)

We note that WynVN = 0 since Wy SV = 0. Since the action of Fy; on k+ must lie in

kL and the action of Fl(l1 ) and Fl(l1 L on the P, must lead to all of (0, we find that

KO = v 1wy =0} and KOt = Uy : Uy = a2} (5.29)
Examining equation (5.17) and using the relation WynV® = 0 we conclude that

U(WynOY RY) = 0 and so
WunbY = 0. (5.30)
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(0)

Taking the commutator of an element of Flg , namely 7%V = O R* and an element of
F 1(11 ), namely T}, = WapR*P, and demanding that they form a closed algebra (requirement

A) we find that
(TN, 74, = O Wwp [RY, RP] = O Wwp(DY) s R* = — X} T (5.31)

provided
X[§Wagp = 0. (5.32)

Since the algebra Fi; is generated by Fl(?) and Fl(l1 ) and we have already specified the
map for these two spaces, Fi; is completely determined once one takes into account the
requirements A, B, C and D. It only remains to find the consequences for the constant
tensors @flv and Wyn and the form of the spaces Fi; and k for the higher rank generators.
Indeed, at the next level we find, using equation (f.30), that the commutator of two

elements of F1(11 ) is given by

3
[Tf{,,T}\’/j] = WpWaiqd™PeRE = —Wip X VO RY = —SWa(DMa TS (5.33)

where 1
T = g@gRgb (5.34)
and provided
~Wapd™® = X %) (5.35)
Taking another commutator with an element of F: 1(11 ) one finds
1 2
I 12| = sWaeO5(D%)s” Ry = ZOITHY (5.36)
where
TE = Winp (D))" RE 2. (5.:37)
Hence we conclude that )
2 a a al
FY = {Tab LT = 59535’} (5.38)
while
FP = {Tgeees 70920 — y 5 (D) pF RO92%9 ) (5.39)

It is straightforward to find the corresponding spaces in k+. Taking the commutator
of T% of equation (5-34) with P., and using equation (.7), we find that

[Tgb,Pc] - g(sLGSEJ where St = QN 78 (5.40)
while the commutator of Ty} {**® with P, gives
(19203 p.] = 3611 SE%) where Sghy = Win p(D®)an” 22" (5.41)
As a result we conclude that

RO = {8t sh =0z} and kO = {sth s S8 = Winp(D)g P28} (5.42)
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It is instructive to carry out the Fj; transformations on kL and see how it transforms into
itself.
To ensure that the map ¥ satisfies requirement B is more involved. For example,

)

requiring the invariance of the map ¥ under F1(11 transformations acting on Fl(?) we also

find, using equations (p.9) and (f.31), that
v (U(IR)TY) = W ([18,TV]) = ¥ (XN"Tp) (5.43)
— XMP(TE) = UTH(T™) = UTHVY. (5.44)

However, to evaluate this last equation requires us to know how T, acts on k© . In principle
we know how to evaluate this as we know the action of Fq; on [, but to find a concrete
expression requires us to be able to project from 1) to k@ not only in principle, but in
practice. It is very likely that this will lead to the constraint of equation (.35).

The same pattern occurs at higher levels, and one can compute what the action of
F 1(?) on k is using the invariance, but to derive the required identity one requires a detailed
knowledge of the projector. It would be good to work this out in detail and also investigate
precisely what kind of sub-algebra F37 is. In doing this one should recover all the higher
identities on @fxv and Wy in addition to the ones found above.

5.3 Field transformations and the dynamics of gauged
supergravities

In this section we will show how the non-linear realisation based on F11 ®, [ does lead to
the precise dynamics of the gauged supergravities. As we will see an essential role is played
in this calculation by the higher level coordinates contained in the ! representation.

In this construction of the dynamics an important role is played by a sub-algebra
formed from Fq; and [. The map ¥ described in the above provides an identification of a
sub-algebra Fi; of F1; with sub-space of the [ representation which we wrote as ¥(7T') = V.
The sub-algebra of interest is found by adding together the generators which are identified
by the map, that is we consider the combinations

Y =V + 4T, explicity YV = VN 49TV, Y& = V& + 9T, T® = VP 4 gT%, ... (5.45)

where g is a constant that will eventually become the coupling constant associated
with the gauged supergravity. The explicit expressions for the T’s are given in equa-

tions (5:18), (£23), (B:39) and (£37).

In order to compute the commutators of the Y generators we need those between the

T and V generators. According to equation (f.4), and using the invariance condition of ¥
of equation (p.14), we find that

[Tl, VQ] = U(Tl)VQ = U(Tl)\I’(Tg) = \I’(U(Tl)TQ) (546)
= U([T1, To]) = ¥ (f12°T3) = f12°V3 (5.47)

where V; = U(T}), i = 1,2,3 and [T}, T3] = f12>T3. Using this relations it is straightforward
to calculate the commutators of two Y generators. The result is

[V1,Ya] = [Vi,Va] + g[T1, Va] — g[Ta, Vi + ¢*[T1, T2) (5.48)
= Vi, Vo] + 29 f12° V3 + ¢ f12°T5 = gf12°Y3 (5.49)
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provided that one assumes that
V1, Va] = —gf12° V5. (5.50)

Thus the generators Y also obey the algebra 771, but with the structure constants rescaled
by g, provided we assume the generators V satisfy the same algebra, but with a structure
constant rescaled by —g. We will discuss the significance of this commutator of two Vs
later. At the lowest level we find, using equations (f.27) and (f.31]), that

(YN YM] = gf™™Mpy P [YN V] = —gX3TYE, ... (5.51)

Using equations (f.47) and (5.50) it is easy to also show that

V1,Y2) =0, [T1,Ys] = f12°Y3, (5.52)

Starting from a general group element of E1; ®, ! we take the local sub-algebra to be
such that the group element can be brought into the form

g=eUeyY AR (5.53)

where we recall that U € k+, Y =V +¢gT, V € k, T € Fy; and R € E1;. More explicitly

2V — ov"PagZNSN 20 SY (5.54)
Y — i (VoTY) g (VireoTs) | (5.55)
where the coordinates of the generalised space-time are denoted by z = (2%, 2V,...) and

y = (yn,yY,...). The only y dependence of the group element ¢ is via the generators Y,
that form a closed algebra. This is essential for insuring that there is no y dependence in

A=) R the fields A now depend on the z coordinates.

the final equations. In the expression e
The above form of the group element differs from the most general one in that it involves
only generators from the Borel sub-algebra of Fy; and the fields in the last factor only
depend on z and not on both z and y. As a result the local transformations must involve
those of the Cartan involution invariant sub-algebra as usual, but in addition y dependent
Borel sub-algebra transformations. We will discuss this later. In fact we will only retain
the % coordinate from all the z coordinates, but it is useful to retain the more general
expression for the day when we understand what to do with the higher z coordinates.
One can rewrite the group element g by moving the factors of €9 ¥” in Y through the
group element so that all the generators of Fq; appear in the order listed in g before the
deformation. That is in order of generators of decreasing rank. Once this has been done
one can interpret the result as taking a fields A to depend generally on z, but in a special
way on y.
The Cartan forms are given by

g ldg=dZ-E-L+dz-G-R+dy-G-R (5.56)

where L = (U, V) are all the generators of [ and Z = (z,y) are the corresponding coordi-
nates and

dz-G-R = e A BgARE gy . G R =e A Bydy . ¢ . TeARE (5.57)
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dZ -E-L = e 2OF (VY dy. SevY dy-e- V) AR, (5.58)

In deriving this equation we have used the fact that e is the group vierbein corresponding
to the algebra Fj1, namely
e VVdeVY =dy-e-Y. (5.59)

The quantity dz - G- R is just the usual expression for the Cartan forms in the absence
of a deformation. The first such forms were given in equation (2.47) if we replace the x
dependence by that of z. The quantity dy - G - R are the E1; valued Cartan forms which
are in the y direction. Examining the above expression we find it is of the form

dz-G-R+dy-G-R:(dz,dy)-<éo> G-R (5.60)
e
where

dy-G-R=e A&y AR (5.61)

is independent of y. It is straightforward to compute the first few Cartan forms using the
F11 commutation relations given earlier in the paper. We find that

GN o = 903, (5.62)
GV arr = gAp X3, GV M, = gAL 1, X0M = S A A n XS ML (5.63)

while
Gla =0, Glram = GOAWNM, Gy = 9010, Aay)pWantd™ . (5.64)

The vierbein E of the non-linear realisation is the coefficient of the [ generators in the
Cartan form of equation (p.5¢) and it is of the form

dZ-Ede-(I()) £ (5.65)
Oe
where

dZ -&- L =e AR Rqz . [AG)ER (5.66)

where dZ = (dz,dy). We observe that E is independent of y. We observe that the inverse
quantity is given by
dZ - €1 L= Rz . [em AR (5.67)

The first few inverse vierbein components are readily calculated using equation (.67)
and the commutators of equations (5.1.8-13) and are given by

1
ETt =01 £ oy =Auy, ETLY =248 — §A[G|MAb}SdSMN, . (5.68)

while
EWy =06, W= glaM _ sa5M (5.69)
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The above expressions for the Cartan forms and vierbeins omit the fact that they
appear multiplied by g(;l on the left and g4 on the right. The effect of this is just to find
the above quantities but multiplied by factors of Vj;; and f/zé\/[ as described below eq. (£.47).

The Cartan form g~ 'dg is invariant under rigid transformations gy of E1; ®, 1 which
are of the form g — gog, but does transform under local transformations, ¢ — gh where h
is in the local subgroup as g~ 'dg — h™'g~'dgh+h~'dh. As such, the only global transfor-
mations on G arise from the global transformations on dZ and, as the full Cartan form is
invariant, the corresponding transformations induced on the first index on G. As such this
first index is a world index in the sense that it transforms under coordinate transformations
induced by the global transformations. To construct the dynamics one normally makes this
index flat using the inverse vierbein E~! of the non-linear realisation and then the result-
ing object G is inert under the global transformations and just transforms under the local
sub-algebra. By definition the dynamics is the set of equations which is invariant under the
rigid ¢ — gog and the local ¢ — gh transformations. Hence, if we construct the dynamics
only from G then we need only find equations invariant under the local transformations as
invariance under global transformations is automatic. We note that in our case

G=E'Gg=£&"'¢ (5.70)

where the matrix £~ is understood to act on the world index of G. Clearly, if the dynamics
is constructed from the flat G’s then it will be independent of the y coordinates. However,
in the case of interest to us here, that is the dynamics of the gauged supergravities, this is
not quite the case as we will explain below. The flat (s will require some correction terms,
nonetheless the dynamics will be independent of the y coordinates as one is adding correc-
tions to terms to the flat G ’s, which are y independent, as a result of demanding invariance
under y independent transformations. Consequently, although the y coordinates play a key
role in formulating the dynamical equations they are not present in the final result.
Using the expression for the Cartan forms of equations (5.3.16-7) and the inverse
vierbein of equations (5.3.21-2) it is easy to evaluate the G; the first one being given by

Gaa R = E"Gua R + EanGN.oRY = g, (010, + 90N R* Aan)go- (5.71)

We recognise this expression as the Cartan form associated with the non-linear realisation
Es with USp(8) local sub-algebra with a term, proportional to a deformation parameter g,
which describes the coupling of the scalars to the gauge fields ©Y A, R®. Consequently, we
find that the gauge group of the non-linearly realise)d theory has the generators O R* = TV

which we recognise as those of the algebra Fl(? . Following the same arguments it is

straightforward to show that

~

1
Ga,bM = 558uAbM + gAaNApr]I\\;P + QQA% — §gAaTAbstTNWNM. (5.72)
We will now calculate the rigid transformations of the deformed theory by starting

with the group element g of F11 ®! and carrying out the rigid transformations g — gog for
go € F11 ®, 1. We begin by considering transformations which belong to k. These can be
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written as gg = €”¥ and In carrying out this calculation we will encounter the expression

eV e¥'Y which, using equations (b.52), we may process as

. . . . . —_ . ,- —_ .
ebVeyY _ ebV—I—yY _ e(y—l—b)Y gbT _ eY Ve gb-T (573)

where
e/ V = [ e mrrmo@ Y cluh)y (5.74)
n

In carrying out this manoeuvre we have used the equation

etel = H ¢ T ANB A+B (5.75)

n

valid for any A and B, but only to lowest order in B. We recall that A A B = [A, B] and
A% A B = [A, A, B]] etc. Carrying out a k transformation in the non-linear realisation we
find that

gdog = evaez-Uey-YeA(z)-R — eszey’er—gvaeA(z)vR' (576)

Thus the net effect of a rigid &k transformation is to change y, and to lead to the E1; transfor-
mation e 97 on the Ej; fields. However, as the dynamics is independent of y we need only
work out the consequences of the latter transformation in eq. (5.76). We have assumed that
passing eV through e leads only to changes in z and y which are irrelevant. At the lowest
level we find that taking gg = ePvVY induces the E4; transformation e 9o~ TN _ ¢=9bnOY R
while taking gy = eba V& induces the F1; transformation e~ 90 TR — e‘gbfllVWNMRaM, tak-

. o aiaz | . —gb™ 79192 _gpo N p@1a2 .

ing e’a192”>" " induces the Fp; transformation e 9’1927 = = ¢73 a1a9a BN and taking
pMN ajazag | . — gbMN 79419293 — gbMN Do P ajlazagz
elarazas YN~ induces the Ey transformation e %atazasTun "~ = ¢"9bajagaz D WenFa .

Using equations (R.§) and (R.9) we find that acting with gy = eV the fields
transform as

SAun = —gbs X3 A, AN . = gbs X3NAY (5.77)
S
6A2{1a2a3 = _gbs(—)ﬁfaﬁ'}/AZlaQag? (578)
while if we take gg = b V& this results in the transformations of the form of eq. (R.49)
a aja
with parameter aqy; = —gbl Wiy, Similarly, acting with gg = e 9ParasVa generates
the transformations of the form of eq. (B-4) with parameter al, = —gbgm@g , and
MN ajazagy
acting with go = eParaga Vwin generates the transformations of the form of eq. (2.41)
with parameter ag ,,,, = —gb5iayas D517 WoN.

One can also carry out rigid k- transformations which is of the form gy = e“V. Clearly,
taking go = e““f» will only result in the change 2% — 2 + ¢?, that is the usual space-time
translations. The higher generators of k+ will lead to changes in z and possibly y. However,
the coordinates y do not appear in the dynamics and in this paper we will only take the
lowest coordinate x® of the z’s. As such, these transformations are irrelevant for the terms
computed in this paper.

Now let us carry out a rigid Fy; transformation of the form gg = e . This gives

gog = eavReszey-YeA(z)-R — e(z-U—I—[avR,z-U])e(va—I—[avR,va])eavReA(z)-R. (579)
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The final factor of e* % leads to the same rigid transformations on the Ey; fields that we
found in section 2 for the massless theory. The commutator [a- R,y Y] leads to generators
of [ and Fq;. However, these results in either changes to z and y or additions to the
Ey; fields A(z) that are y dependent. Such latter terms do not maintain the form of the
group element which must be brought back to the same form using local y dependent
transformations. For the reasons given above we can in effect forget about these terms.
On the other hand the commutator [a - R, z - U] lies in [ and so it contributes to changes
in z and y. In the latter case we must rewrite the generators of k£ in terms of those of the
generators Y = V + ¢gT to find the change in y’s and as a result we find additional Fq;
generators whose effect must be evaluated. Since we are only keeping the coordinates z®
from all the z coordinates, we only have the factor

e Petla o] (5.80)

It is most easy to explain how to process this term by studying the simplest case from
which the general procedure will become apparent. As such taking gy = e R(LN, we find
that the factor of equation (f.8() is equal to

% Pegracn VY (5.81)

where we have thrown away the part of ZV that belongs to k* and taken [P., V"] = 0.
The net result is a rigid k transformation with parameter z€a.y. Following our discussion
above for such transformations we find that acting with gy = e%nN BN Jeads to a group
element of the form

c /. _c N aN .
TPy Y o=gzacnT™ paan R*™ JA(z)-R (5.82)

which can be evaluated using the EF7; commutators as we did for the massless theory. A
.. . . N Re192 a R%19293 aMN R%1---%4
similar calculation taking gy = e"@192”'N | gg = e"era2a37' and gg = e"o1--aa""MN
leads to effective k transformations with k parameters 2z¢aly,, 3rag,, ., and 43:%%11\1_ Las
Examining equation (f.81]) we conclude that a rigid Eq; transformations results in the x
independent transformations of the massless theory as well as x dependent transformations
that can be interpreted as effective k transformations. As such we can account for the latter
transformations by replacing the x independent parameters b of the k transformations by

b(x) where

by(z) = by + 2%y, bY (x) = bY + 227, (5.83)
bglag (x) = bglaz + 3‘%‘0&?&1&27 bg/{lt\llgag (x) = bg/{lt\llzag + 4xcalc\i[111\1...a3 Tt (584)

Thus the rigid transformations of E1; ®s [ lead to the same rigid transformations of the
massless theory as well as k transformations that have the x dependent parameters of

equation (.84).
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The resulting F11 ®; [ transformations of the the Fy; fields are given by

0AuN = Oabn(T) — gbs( VXM Aoar + gWarpb? (2) (5.85)
SAN = %a[albfj; () + 58[(11195(35)/1@2} 7d™N + gbg(z) X5) AM
Wbl (1) Ay d®™ — 2gbt, (0007 (5:36)
5 anay = 500 ) (7) Oy bar (2) A DS

1
+68[a1 bM(‘/E)Aaz,NAasL dMNQDaP - ng( )@ﬁ faﬁ

a1a2a3
+gWMbeZ1( ) MAN ]+ gWMRb[al( )dMNQDgPACLQ,NAas],P

aza3

_gDa PWPNba1a2a3( ) (587)

where we have used the identities

Oabn ($) = QgN a[al baz]( ) aé\iag (588)
1 « «a
ga[al ba2a3} ( ) = aal a2a3 6[CL1 ba2a3a4] ( ) ag/{l.\.l.cu (589)

to rewrite the transformations that are the same as in the massless theory.

The transformations of equations (p.85) to (f.87) uniquely determine the corresponding
invariant field strengths as they are both only first order in derivatives. These are obtained
adding the order g corrections to the field strengths of eq. (R.5§) of the massless theory.
The results is

Fayant = 200, Aagjnr + 9X 0 Ay N Aayy p — 49WainAY o) (5.90)
FM oy = 3010, AN+ §8[G1Aa27NAa3L pd™NP — 69X VAL | A n
+5 ! X[NP}dRQMA[al NAay Py + 3gOM AT (5.91)
Fih oy = 400, A%, 0 — a[alA@ MAgy NAay pd " NDYT — 40, AN A ND5N(5.92)
+4gDS O A, p AL, +169D8 " Wen AGN  —4g D P Wen ALY AN

~4gD3 " X5 Ajgy p Aur AT~ 6gXI['%MN]dRPSDgQA[al,MAazvNAa3vPAa4LQ‘

Requiring the closure of F1; with the conformal group has the net effect of promoting
the parameters b(x) to be arbitrary functions of z. Given that b(x) contain the term z - a
in eq. (-84), the identification a = dA in eq. (P-56)) gives the normalisation of b(x) in terms
of A as

1 a fe!
Ay = bM(‘T) Aé\/[ = thjz\/[(x) Aa1a2 = gbalaz (.Z') Ag/{lt\zlga:; = Ebg/{lt\jza:; (‘T) (593)

Substituting this into the transformations of eqs. (b.85), (5.86) and (F.87) we find

5Aan = OuAn — gAs XM Agrr + 4gWaip AL (5.94)

— 45 —



1
0AG 0y = 2010, Mgy + 5000, s Aqgrd™™ + gbs () X37 Ag

a1a2 aja2
+2Wsp Ay Agyrd™™ — 3gA% 00, (5.95)
« « N a M
5Aa1a2a3 = 38[a1Aa2a3} + a[alAMAam}DN

aiazas

1
+ 5O At Ay N Ay pd"NODGT — gApOF f A]

+agWwp A, DM AL

azas)

2
+ ggWMRARldMNQD%PAaQ,NAagLP

[a
—16gD5 " WpNAYY, ., - (5.96)

We can now compare the field strengths and gauge transformations obtained here with
those found from supersymmetry in section 4. To do this, we carry out the field redefinitions
and the corresponding redefinitions of parameters of eqs. (B.2§) and (B-29), both of which
are determined completely from the massless theory. We find complete agreement, and
in particular one can check that the order g terms in eqs. (5.3.44-46) are identical to the
order g transformations found from supersymmetry and reformulated in terms of the E7q
fields and parameters in eq. (.29). The relation of eq. (B-29) between the gauge parameters
obtained from supersymmetry and the Fq; parameters A has been carried out in such a way
that the variation of the field A, is in both cases of the form §A,, = ndA,_1. This ensures
that the parameters are normalised in the required way. All the remaining coefficients in
eqs. (5.3.44-46) are then determined independently by both calculations, thus giving 12
independent checks.

As noted above, since the transformations from k involve only part of the [ multiplet,
the corresponding generators satisfy constraints and as a result the associated parameters
have an ambiguity. For example, as WynVY = 0 the parameter by is ambiguous up to
by — by+Wunc for any constants ¢V. Examining the transformations of equation (%))
to (F.87) we indeed see that such ambiguities do not affect the transformations of the fields
as a result of identities such as that of equation (5.26).

The unique equations which are invariant under the transformations of the non-linear
realisation above and are Lorentz and USp(8) covariant are of the form of eq. (R.57). The
result is

Viij Fgpe = éeabcdef/% Fif Vi Vil Fopea = 7—12D]°(4N €abede (95 0°90)int,  (5.97)
which is the same as egs. (B.14) and (B.29). The non-linear realisation also possesses
local transformations associated with the Cartan involution invariant subalgebra. The
transformations above, which determine the field strengths, arise from the Borel subalgebra
of F1; with the exception of the local USp(8). We believe that also requiring invariance
under the local transformations will fix uniquely the duality relations above, including the
coefficients in eq. (5.97).

We conjecture that the duality relation between the field strength of the 4-forms and
the mass deformation parameters arise from equating the Cartan form in the z% direction

proportional to R};y** and the Cartan form Gz]’w’a N = gWarnd8 in equation (p.64), in the
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yé\/‘[ direction and proportional to R»Y. This leads to the duality relation

1 o o )
5760
—1 7 My N M YrNm
= TpgdCabede Warn [Vz’j Vi = 2VijmV [ijm] . (5.98)

which is equal to the duality relation of eq. (f.2§) that was obtained imposing the closure
of the supersymmetry algebra. The overall coefficient and the USp(8) structure of the
terms are fixed from eq. (f.2§), but requiring that the Cartan form transforms correctly
under the full local subalgebra will fix this duality relation uniquely and independently of
the supersymmetry result. Thus we find that the non-linear realisation of F1; ®4 [ does
indeed correctly account for the dynamics of the gauged supergravities. It is important to
note that the k£ part of the [ multiplet, that is some of the generalised coordinates, play
an essential role. The above calculations artificially truncated the remaining part of the [
multiplet and it would be very interesting to find out what is the effect of these additional
coordinates. Some considerations on this can be found in reference [Bd].

In the usual non-linear realisations of Fi; ®, [ an extension to include the closure
with the conformal group has been used. This had the virtue of making local all the global
transformation of E1, the rigid parameter being the part of the local gauge transformation
that is linear in z. However, as already mentioned, for the above case we found that the
rigid parameters of Fq; combined with the k transformations into a parameter which has
a constant and a linear term in z. Combining with the conformal group would add all the
higher  dependent terms of a completely local transformation.

Using a non-linear realisation in which part of the [ multiplet of generators plays a
non-trivial role leads to additional rigid transformations corresponding to the part of the
I multiplet that is non-trivial, i.e. k. As we have seen these combine with the induced
x dependent FE71 transformations to form a set of parameters that has a term which is
constant and one that is linear in x. This parameter does not occur in the massless
theory where one only has the constant Fy; parameters which once one closes with the
conformal group becomes replaced by local gauge parameters which contain the constant
FE4q parameter as the term linear in . The transformations of the fields then only contain
the derivative of the gauge parameter. The situation in the deformed theory is different
in that the closure with the conformal group will lead to local (gauge) parameters which
have a constant part that contains the parameters of £ transformations and a part that is
linear in z which contains the F1; parameters. However, the transformations of the fields
contain not only the derivative of the gauge parameter, but also the gauge parameter itself.
Indeed the presence of these latter terms can be viewed as a consequence of the existence
of a non-trivial role for some of the generalised coordinates.

Comparing the field strengths of equations (p.94) with the “flat” Cartan forms of
equation (b.72) we see that they have the required from but the numerical coefficients are
not quite the same. In fact the expression of equation (b.79) is not quite invariant under
the rigid transformations. This is in contrast with the Cartan form of equation (5.71),
which is invariant. The problem is that the form of the group element, and so the Cartan
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forms, has been fixed using the local symmetries and having made a rigid transformation
one must make a compensating local transformation. However, such a local compensating
transformation does not leave the “flat” Cartan forms invariant and in particular this is
the case for the local transformations which are y dependent. Taking this into account one
recovers invariant expressions that are in agreement with the ones mentioned above and
derived by using the explicit transformations of the fields. In the general procedure to find
the dynamics from the non-linear realisation using the “flat” Cartan forms the final step is
to find expressions which are invariant under the local transformations which automatically
include any local compensating transformations. As such following this procedure will also
lead to the same result as we found using the explicit variations of the fields.

Essential for the derivation of the dynamics of the gauged supergravities was the choice
of group element of equation (5.5J). This can be obtained from the most general group
element by taking a sufficiently large local sub-algebra. The most general group element
differs from that of equation (f.53) only in that the fields A are functions of z and y and
not only z. The local sub-algebra must contain local transformations that belong to the
Cartan involution invariant subgroup of Fj; that depend in an arbitrary way on z and y.
However, we must also have local transformations that belong to the Borel sub-algebra of
F11 that depend on z but not in an arbitrary way on y so as to leave the group element
in the desired form. We note that for the case of no dimensional reduction we have a local
sub-algebra that has only the Cartan involution invariant subgroup of Fy; which depend
in an arbitrary way on z and y. While for the dimensional reduction on a torus we have
©Y = 0 and so there are no y coordinates. It would be good to understand in more detail
the local subgroup and the precise way in which it is local given that we have two sets of
coordinates and so the meaning of local is more subtle that the usual case.

We have made no attempt in this paper to discuss what happens to the dependence
of the fields on the z coordinates other than the very lowest one which is that of the usual
description of space-time. As suggested in [Bf], it could be that these may lead to more
propagating degrees of freedom. This is perhaps the most important unanswered question
in the non-linear realisation of Fq1 ® (.

Another aspect of the above discussion that requires further thought is the commu-
tator between the VV’s of equation (5.50). While the commutators of the generators of
FE4q are unmodified regardless of what theory one is discussing, the commutators of the
generators of k part of the generalised space-time appear to change if one is discussing a
gauged theory as opposed to a the massless theory and from one gauged theory to another.
To understand what is going on it is useful to consider gravity and its formulation as a
non-linear realisation. This is the non-linear realisation of SL(D,R) closed with the con-
formal group. Of course the resulting theory is Einstein’s general relativity with a possible
cosmological constant and so has no preferred background. However, the intermediate step
using first only SL(D,R), or alternatively the conformal group, is linked to Minkowski
space, or equivalently the Poincare algebra, but when the two are combined one has a
background independent formulation. However, as the final result is general relativity with
a possible cosmological term it also possesses anti-de Sitter space as a solution. Indeed,
one can instead start with an anti-de Sitter algebra which has non-commuting space-time
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translations to form Lorentz transformations rather than the commuting relations of the
Poincare algebra and enlarging this to include SL(D,R) and closing with the conformal
group. One finds that the vierbein becomes redefined to incorporate that of anti-de Sitter
space and Einstein’s general relativity is again the result. The isometries of anti-de Sitter
space emerge from the formulation based on the Poincare group as the space-time trans-
lations corrected by higher generators that enter when one considers the closure with the
conformal group. Similarly in the case being considered here although the algebra of the
k generators seems to depend on the gauged supergravity being considered the result after
one completes the non-linear realisation will be equivalent in the same sense.

In reference [RJ] a first adhoc attempt to account for the dynamics of gauged su-
pergravities using a non-linear realisation based on Fp; but also including the space-time
translation operator P, was given. The commutator of P, with generators of E1; was taken
to lead to another generator of F1; and the Jacobi identities were used to find these commu-
tators given the lowest one between R*" and P, which was given by [R*N, P)] = 5{3@(]1\[ R~
where ©Y are constants. As noted in that paper this was only correct when viewed form a
suitable perspective. A similar adhoc approach was taken when deriving the massive IIA
supergravity theory as a non-linear realisation [2J] and in this case one recovers the correct
theory with all the required terms using this method.

However, when the generalised space-time was introduced in reference [B1] the com-
mutator between generators in F1; and the [ multiplet was taken to be a member of the [
multiplet with a structure constant that is determined using the fact that the | multiplet
is a representation of Fq1. This is the case in the construction used in this paper i.e. equa-
tions (p.4)- (F.13). There is however a relationship between the two approaches which is
most easily seen by examining equation (p.2§) which is a commutator between an element
of Fl(ll)L and P, which results in an element of k£(®). This particular element is identified
with the map ¥ with the element O R of Fl(?) which is the result in the alternative
approach. This is indeed the general pattern and one can recover the commutators of the
adhoc approach from those of the correct approach of this paper in this way. We note
that the relationship between the two approaches only applies to the commutator of the
generators of Flll and not all those of F1;. Indeed, if one tries to use it more generally as
was noticed in [RJ] the Jacobi identities are not satisfied in the adhoc approach while they
are guaranteed in the approach of this paper. The Romans theory can also be constructed
using the approach of this paper and similar comments hold for this construction and the
adhoc approach of reference [2J].

It was observed [R9] that one could find the relations satisfied by OY and Wiy in the
adhoc approach by using the Jacobi identities on a suitable set of generators. This can be
recovered from the correct approach of this paper. The commutator of an element S € Fll1
with U € k' is an element V € k, i.e. generically [S,U] = V. As the map ¥ is a one to
one map from Fy; onto k, ¥~! is also a one to one onto map in the other direction. We
note that

[, 0[S, V])] = w~H(T,[S,V]) = =¥~([S, [V, T]) = ¢~ H([V; [T, S])) (5.99)

using the fact that the map V¥ is invariant and so also is its inverse. Taking T' = O R*,
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S = S and V = P, we do indeed find the constraint of equation (5.2). Taking other
choices of generator one can find the other constraints. This is to be expected as one is
using the invariance of ¥ which leads to the constraints in the method of this paper.

6. An explicit example and the physical meaning of the map ¥

In order to make the constructions in this paper more concrete we consider an explicit
example that is well known, namely the gauged supergravity that arises from the IIB
supergravity theories dimensionally reduced on a five sphere with gauge group SO(6). In
doing so the physical meaning of the the subspaces Fi1, k and their complements will
become readily apparent and seen to apply to any gauging.

We first recall the generators of F1; labeled according to the preferred SL(10, R) algebra
that leads to the IIB theory [[[2, P4];

K&B’RO’R—l—,R&l&za’Rél...fm’Rél...&ga’Rél...&mi)’R&l...&g(aﬁ)’Rél...&loa,Rﬁl...&lo(aﬁ’y)’ .
(6.1)
where &,ZA) =1,...,10 and R~,R" and R* are the generators of the manifest SL(2,R) of
the IIB theory whose locally realised SO(2) subgroup is given by R — R~. We denote the
indices of the vector representation of SL(2,R) by «, 3 = 1,2. The [ multiplet for the IIB
theory is given by [A]

P&, Zfloz7 Zélm&?’, Zfll...&5a7 Z&I'"&S’g, Zél...fn’ Z&1~~~&7(0¢,6)7 Zﬁl...&9a7 Zﬁl...&g(aﬁ’y)7 o (62)

We note that if we delete a space-time index from the generators of Ei; of equation (p.])
we find those of the [ multiplet in equation ([.) as expected.

It is instructive to first examine how the Fq1 generators and members of the [ multiplet
of the five dimensional theory arise form these multiplets in the IIB the dimensional theory
given in equations (p.]) and (f.9). To find this we split the indices range of @ etc into
a=a,a=1,....,5and a =i+ 5,a =6,...,10. The i,j indices transform under SL(5, R)
in an obvious way.

The Eg internal symmetry group in five dimensions comes from the E1; generators K* IR
R—, RO, RT, RY> Ru- whered,j =1,...,5 as well as the negative root generators Rija,
R;, . i,- The maximal compact, or equivalently Cartan involution invariant, subgroup of
SL(5,R) is SO(5) which are just the Lorentz transformations in the upper five dimensions.
Under this SO(5) the generators K?; decompose to K(¥) and K], which are the 10 and
5 representations, the latter being just the Lorentz generators. The decomposition of the
other fields is obvious. The local USp(8) symmetry consists of the 36 generators K il R—,
R — R;jo and Ru-+4 — Ry .. The remaining generators of Fg lead in the non-linear
realisation to the 42 scalars of the theory.

The 1-form FE7; generators in the five dimensional theory are easily seen from equa-
tion (B.1]) to be given by

Kai(5, 1)’ thz'oz(g7 2)’ Rail"'ig’(lo, 1)’ Rail"'a5a(1, 2)’ (63)
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which make up the 27 of Eg that is R*Y. The numbers in brackets denote the SL(5,R) ®
SL(2,R) representations. The 2-form FEj; generators are easily seen to be given by

RMe20(1 2), R102i] (1—0, 1), Ra1a2...a5i1...i4a(5’ 2), RMa2.--a501..i5] (5, 1) (6.4)

which is the 27 of Eg i.e. R} .
Examining equation (b.2) we find the Lorentz scalar members of the [ multiplet are
given by
Py(5,1),2'(5,2), Z7%(10,1), 2" *(1,2) (6.5)

which make up the 27 of Eg i.eZ", while the one forms are given by
7%(1,2), Z°7(10,1), 2 -42(5,2), Z%1-5%(5 1) (6.6)

which make up the 27 of Eg, i.e. Z§;.

The supergravity with gauge group SO(6) has a cosmological constant resulting from a
non-zero field strength for the 4-form gauge field A,, . o,. This is the self-dual field strength
of the IIB theory and this is an SL(2,R) singlet the gauge group SO(6) commutes with the
manifest SL(2, R) symmetry of the IIB theory in ten dimensions. We will have to reorganise
all the above fields into representations of SO(6) ® SL(2,R). This is straightforward once
one realises that the this SO(6) has an SO(5) sub-algebra that is just the Lorentz transfor-
mations in the upper five dimensions and so the Cartan involution invariant sub-algebra
of SL(5,R). Since all the above generators transform under SL(5) ® SL(2) we just perform
the decomposition of the generators under the first factor to SO(5) and then reconstitute
the resulting generators into those of SO(6) ® SL(2,R).

To find the gauged supergravity of interest we must take Fl(?) = SO(6) as the gauge
algebra is just Fl(?). As such, in this case, Fl(?) only contains the 15 of SO(6) out of all
the SO(6) representations in the adjoint (78) of Es. We note the the 78 of Eg decomposes
into the (1,3) @ (20,2) @ (35,1) of SL(6,R) ® SL(2,R). In fact the (35,1) decomposes
under SO(6) ® SI(2,R) to contain the (20,1) and the (15,1) and it is the latter which
is the adjoint of SO(6). Examining the Fj; generators that lead to Eg we find that the
SO(6) algebra consists of the generators Fl(?) = (KUl R — R, .} which belong to
the (10,1) and (5,1) of SO(5) ® SL(2,R) respectively.

The map ¥ maps Fl(?) = SO(6) to a (15,1) of 1 which can only consist of the
SL(2,R) invariant generators in equation (B.§) and so

KO — {Pi, Zijk} (6.7)

which are the (5,1) and (10, 1) of SO(5) ® SL(2,R) and so indeed belong to the (15,1) of
SO(6) ® SL(2,R). The complement contains the generators k(O+ = {Zi® Zi1-52} which
belong to the (5,2) and (1,2) of SO(5) ® SL(2,R) and so the (6,2) of SO(6) ® SL(2,R).
We recall that k(01 consists of the objects WynZ” and as this is the same projector
that defines Fl(ll) we conclude that this latter space is also the (6,2) of SO(6) ® SL(2,R)
and so is given by
F{}) = {Re, gen-asa) (6.8)
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As a result the complementary space belongs to the (15,1) of SO(6) ® SL(2,R) and is
given by
Fl(::[L)J_ — {KU«hRail“iS} . (69)

We note that ¥ maps F; 1(11 ) to k() and so this and its complementary space are given by
k’(l) _ {Zaa,Zail...i4,a} and k,(l)J_ _ {Zaij’Zail...ig,,a} (610)

which belong to the (6,2) and (15,1) of SO(6) ® SL(2,R) respectively.
By carrying out the commutators of generators of Fl(ll) with themselves we find that

Fl(f) _ {Ralazij7Ra1a2i1mf15,j} (6.11)

which belongs to the (15,1) of SO(6) ® SL(2,R), while the commutators of F1(11) with Fl(ll)L
imply that
Fl(f)l _ {RalazajRanh---azla} (6.12)

which belongs to the (6,2) of SO(6) ® SL(2,R).

We now comment on the physical meaning of the above spaces. As we have mentioned
Fl(?) is just the gauge group and it included the SO(5) Lorentz rotations in the upper five
dimensions as well as transformations that originate from a four index generator in the
upper directions. The subspace k of the [ multiplet contains the generators that lead to
the coordinates which are active in the gauged theory. At the lowest level these are in
the adjoint representation of the gauged group representation and the generators are given
in equation (B.7). These consist of the space-time generators of the internal space P; and
the Z¥%. The corresponding coordinates are y* and the Yijk- The former are those of
space-time and can be thought of as belonging to the coset SO(6)/SO(5), while the latter
belong to SO(5). Thus we see that even in this case of gauged supergravity, which unlike
most cases is obtainable from a conventional super gravity by dimensional reduction, the
techniques of this paper adds extra coordinates which make more manifest the underlying
gauge symimetry.

At the next level we find in F1; the 1-form generators which are in one to one cor-
respondence with the vector fields of the theory. In particular, the generators in Fl(ll)l
correspond to the vectors that form the Yang-Mills theory with gauge group SO(6) while
those in Fl(ll) correspond to vectors in the (6,2) of SO(6) ® SL(2,R). The latter can be
eaten by the 2-forms whose associated generators are in Flf . The 2-forms associated
with Fl(f ) can then be eaten by the 3-forms etc. The eating process is apparent from the
transformations of equations (F.91))—(F.93) where one finds that the projectors that define
Fl(?) occur acting on the naked gauge parameter of rank n. For example, we find in §A,n
the term 4gWxmAM and so we may gauge away the 1-forms in the space projected by
Wi, that is those in Fl(ll) Similarly in 5AC]X ay there occurs the term —3g0M Ag o, mply-
ing that we may gauge away the 2-forms associated with Fl(f) etc. This would leave just
the fields associated with Fl(?)l. It is simple to understand why this is the case for any
gauging. The generators in k lead to rigid transformations that can be identified with the
space-time independent part of the gauge transformation. As such the k transformations
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can be identified with the gauge parameters that appear in naked form, that is without
space-time derivatives. When this occurs in the variation of a field we can gauge it away.
However, the map V¥ identifies &k with F7; and so it is the fields associated with the latter
that can be gauged away.

The active coordinates can also be given a physical meaning. The 1-form fields which
are physical are those associated with the generators in Fl(l1 L of equation (B.§). They couple
to the point particle and the D3 brane as seen from ten dimensions. The corresponding
charges are just found by looking in the [ multiplet for an object with one less space-
time index and they are in this case found in k(¥ of equation (b-1). The corresponding
coordinates are just the scalar coordinates that are active as this is the role of k() in
the group element of the non-linear realisation. This is very natural as it means that the
generalised space-time used in this paper includes just the coordinates corresponding to
the branes which are active. We find the analogous relations between the fields associated
with Fl(f)J', the branes to which they couple and their corresponding coordinates in 40N
It is then not surprising that the generators in k obey equation (p.5()) as this is just the
algebra expected for the brane charges.

One can map all the fields and coordinates of the IIB theory to the eleven dimensional
theory just using the fact that the underlying Fj; symmetry is unique [[3, P§]. One
finds that the 4-form field Ag,a9a3a4:@1,02... = 1,...9 responsible for the SO(6) gauge
field gets mapped over to Ay, . 4,10 11 Which is part of the six form field. This corrects the
statement made by the authors in reference [29]. The mistake made was to assume that the
SO(6) gauge symmetry was related to the gravity SL(6,R) symmetry which occurs on the
reduction from eleven dimensions to five dimensions. This error is most readily apparent
when one considers the way the preferred gravity sub-algebras of the eleven and IIB theory
occur in the Ej; Dynkin diagram and the fact that the SO(6) symmetry commutes with
the manifest SL(2,R) symmetry of the IIB theory.

Clearly, D — 1 forms that arise from the compactification of F1; fields that are beyond
the traditional fields of supergravity lead to massive theories that can not be found by usual
geometric compactification procedures on traditional supergravities. An example of this is
the ITA theory of Romans, whose mass parameter is dual to a 9-form that arises from the

eleven-dimensional field A However, as the five-dimensional case examined in

ai...aio,(bc)"
this section shows, the gauged S(é(é) theory, when seen as arising from eleven dimensions,
involves the 6-form which is a traditional field of eleven dimensional supergravity. However
this does not lead to a geometric interpretation from eleven dimensions as a non-vanishing
7-form field strength does not admit an decomposition in terms of invariant objects in five

dimensions. Thus the notion of geometric compactification is more restrictive.

7. Conclusions

In this paper we have derived the fields, transformations and dynamics of all the five
dimensional gauged supergravities from a formulation based on Ej; and separately by
viewing it as a traditional supergravity and using its local supersymmetry algebra. The
results are in precise agreement providing a very precise check of the Fy; programme. The

— 53 —



five dimensional case was selected for this test as it shares with the lower dimensional cases
a very rich group structure, but it also possesses all the main duality features involving
fields of higher rank of the supergravities in higher dimensions.

The E7; formulation has a field content of form fields, that is fields with one set of
totally antisymmetrised indices, which is democratic that is for a physical degree of freedom
of the theory described by a p form we also find its dual field that is a 5 — p — 2 form.
Thus the scalars are dual to 3-forms, the vectors to 2-forms and we also have form fields
of rank 4 and 5, which are not dual to any physical degree of freedom of the system but
lead to the gauged supergravities and space-filling branes respectively. In section 2 we
derived the F1; transformation of these fields for the ungauged theory that is the massless
maximal supergravity theory and so arrived at the gauge transformation of these fields.
The dynamics is given by equating the field strength of a gauge field to that of its dual
using the € symbol with the field strength for the 4-form gauge field being zero. In section
3 we showed that the supersymmetry algebra closes precisely when one adds the form fields
predicted by Fq1 and that the gauge transformations this requires are in precise agreement.

The rest of the paper concerned the gauged supergravity theories. In section 4 we
deformed the supersymmetry algebra to find all the possible gauged supergravities in the
framework of the democratic formulation. This formulation is particularly suited to incor-
porating the dynamics of the gauged supergravities in that the dynamics is of almost the
same structure as the ungauged case except that the field strengths now contain additional
terms and the five form field strength is dual to the mass deformation parameters suitably
contracted with the scalars.

We then derive the field transformations and the dynamics of the gauged supergravity
from the Fqq1 viewpoint. An essential role is played by the generalised space-time associated
with the first fundamental representation [ of E11. In particular we consider the non-linear
realisation F11 ®s . An essential step in the construction of the dynamics is the existence
of a linear map V¥ from F7;1 onto a subspace k of the representation [ such that the image
is the adjoint representation of a sub-algebra, denoted Fj; of Fq;. This map is invariant
under F77 and it preserves the Lorentz character of the elements on which it acts. Such a
map does not exist in eleven dimensions, however, there is such a map in the IIA theory and
this is responsible for the theory of Romans in ten dimensions. Such maps also exists in any
dimension below ten. The map provides a projection from FE7; into £}y and so splits Eqy
into F'q and its complement Fll1 It also follows that F}; is isomorphic to k. The generators
of k as well as Fq;1 are active in the non-linear realisation and as such one finds a space-
time with coordinates arising from the presence of k£ in addition to those of the familiar
space-time. This also implies that we have additional transformations resulting from the
presence of k which become identified with the space-time independent components of the
gauge transformations. The latter can be used to gauge away some of the fields of Fqq,
which as a result of the identification of k and Fiy, are just the fields associated with
Fy1. Thus the fields which can not be gauged away are those corresponding to Fﬁ The
additional coordinates do not appear in the final dynamical equation but their presence is
very natural in that they are associated with the branes that couple to the latter fields.
Some of these additional coordinates are just those of the usual space-time, but in the
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upper dimensions. These correspond to the presence of components of the graviton in the
upper directions and so to point particles.

The existence of an invariant map between F1; and [ divides the generalised coordinates
in two sets one of which is closely associated with the gauging. It also specifies the group
which is gauged and the corresponding constraints on the embedding tensor. The resulting
gauge transformations and so the corresponding dynamics agree precisely with that found
in section 4 using supersymmetry. A very special case of this technique is that of the Scherk-
Schwarz reduction [i2], however, the technique used in this paper is much more general.

In [£3] it has been pointed out that the quadratic constraint of the embedding tensor
can be associated to (some of) the representations of the D forms. This is clear in the
five-dimensional example carried out in this paper, given that the quadratic constraints
of the embedding tensor project out the 27 @ 1728 of the product ©© [R(], which are
the complex conjugates of the representations of the 5-form fields. The authors of [
observe that one can interpret the D-forms as Lagrange multipliers whose field equations
produce the quadratic constraint of the embedding tensor. In the five dimensional case this
observation can be checked explicitly determining the field strength of the 4-form at order
g, which contains the 5-forms. This analysis has not been carried out in this paper. It
would be interesting to further investigate in this direction. A month after this paper was
originally submitted, it was explicitly shown in [#d] in the case of maximal supergravity
in three dimensions that the field equations of the 3-forms precisely lead to the quadratic
constraint of the embedding tensor.

As mentioned earlier there is considerable evidence for the Fq; part of the non-linear
realisation and for [ being the multiplet of brane charges however, there has so far been
very little evidence for the [ part of the non-linear realisation that is the generalised space-
time that [ leads to. However, in this paper we have seen that it is essential for the
construction of the gauged supergravities. In particular it directly leads to the terms in
the dynamics that contain no space-time derivatives such as the non-Abelian terms in
the Yang-Mills field strength and the gauge transformations that contain no space-time
derivatives. Indeed, the former can be traced back to derivatives in the Cartan forms with
respect to the extra coordinates while the latter arise from transformations in the extra
coordinates. While there is much that remains to be understood about the role of the Fy;
generalised space-time, at least part of it has been confirmed indicating that the rest also
has a required purpose.

As has already been noted [Bf] the use of the E1; generalised space-time [B1] has some
features in common with the more recent generalised geometry [, l§] which also adds
structure to that of traditional space-time. The E71; approach automatically adds to the
usual spacetime all the necessary coordinates and in particular those required to ensure U
duality and all the higher symmetries in £17. Those at low level are just the coordinates
corresponding to the charges of table 1 [B3, B4]. Indeed the necessity of adding the scalar
charges in the first column was specifically commented on in reference [B4]. The procedure
spelt out in this paper also includes all the effects from higher level field strengths, or
fluxes, and coordinates which occur at the higher levels of Fy; and the [ multiplet, indeed
the map ¥ involves generators associated with all the gauge fields and coordinates which
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are not Lorentz scalars.

The generalised geometry programme [[f§, ] has largely concentrated on the coor-
dinates required for T' duality introduced in a systematic way first in [{7]. From the Eq;
perspective these are those found by decomposing to the O(10,10) symmetry and keeping
the lowest level coordinates which for the ITA theory for example are P, and Z*'! corre-
sponding to 2% and y, respectively [B4]. Indeed one can formulate the string from the Fy;
perspective using these coordinates, however to formulate the eleven dimensional membrane
and five brane one requires more of the coordinates contained in the [ representation [B4].

The FE11 ® | non-linear realisation studied in this paper includes as a very special
case the old Scherk-Schwarz dimensional reduction technique [{J]. The latter exploited
the existence of a rigid internal symmetry by giving the transformations some limited
dependence on the upper coordinates. However in the Fq1; ® | approach a vast symmetry
i.e. Fq1 can be used in conjunction with all the coordinates in the | multiplet. We note
that this includes symmetries related to vector and higher rank fields. Indeed, the Romans
ITA theory can be found using such a symmetry.

The conformal group applied to F1; ® [ results in the usual coordinates of space-time
having general coordinate transformations. It would be good to understand what the con-
formal group implies for the higher coordinates and indeed what is their corresponding
geometry. Particularly in this context it would be good to see how the Fq; and gener-
alised geometry approaches compare and what they can learn from each other. That the
generalised geometry required addition coordinates beyond those of the z% and y, of the
doubled torus of was readily apparent from the Ej; picture [B4, Bg). However, it would
be interesting to see how the geometrical aspects of the generalised geometry programme
appear when viewed from an Fq; perspective.

One advantage of the F1; approach is that it unifies many aspects of supergravity and
so string theory. The gauged supergravities are such examples, while some can be obtained
by dimensional reduction of the ten and eleven dimensional supergravity theories there are
many others which have no higher dimensional origin. However, each gauged supergravity
is associated with a non-trivial D — 1 form and it is part of the unifying F1; non-linear
realisation [29]. Previously the gauged supergravities which had no higher dimensional
supergravity origin could only be obtained by deforming the supersymmetry algebra and
so were outside the framework of M theory as usually envisaged. It is straightforward to
apply the F1; ®, [ non-linear realisation described in this paper to all the other cases and
obtain all the gauged maximal supergravities in any dimension.
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A. 5-forms in 5 dimensions from F;;

In this appendix we want to extend the analysis of section 2 to include a 5-form generator.
This operator is associated to a field with five antisymmetric indices in five dimensions,
which has no field strength and therefore has no propagating degrees of freedom. Fields
with D antisymmetric indices in D dimensions are in general associated to spacetime-filling
branes, that have a crucial role in the construction of orientifold models.

The 5-form generator Rj\”/}"'as’a occurs in the commutator

[y, Rososese] = oo, (A1)
and the Jacobi identity between the operators R%M R?\Cf and RC}D@ leads to the commutation
relation

|:Ra M Rbcde:| _ _2D[OJZVMR%?Cde7ﬁgOC6‘ (AZ)

A constraint on this 5-form operator comes from the Jacobi identity between the operators
R*M  RbN and Ree which is

dMNPRcILDbcde,a i 4D§(MSO(N) [PQ]ggwR%dee”y —0. (A.3)

The representation of the 5-form generator is contained in the 78 ® 27 = 27 ¢ 351 ¢ 1728,
as can be seen from its Fg index structure, and it can be shown that eq. (A.3) restricts
this generator to be in the 27 @ 1728 of Eg, in exact agreement with [R9, B(].

In order to determine the gauge transformations of the field associated to this genera-
tor, we have to extend the form of the group element of eq. (£.37), and we therefore write

gaA = eXp(Aal .as, aRal o ) eXp(Ag/{leRal a4)
exp(gagAal___a3Ra1"'a3’B) exp(AéVfazR“l“z) exp(AmMRa’M). (A.4)

Acting with

g = exp(a! . o Ro) (A.5)

leads to a transformation of the 5-form field

SAM = aM (A.6)

aj...as,q aj...as,q’

while acting with the group element of eq. (£.43) leads to

6‘4(]1\/1[ a5, a[a1a2Aa3a4a5},a (A7)
and acting with the one of eq. (B-44) leads to
5A¢]1V1[ .as,o = 20’[017 Aag a5]D16DNgaﬁ + A[a1a2Aé\;a4 asLPD]’i/Pgaﬁ
2
+§A[a1,NAazvaaB,QAa47Raa5],SdRSTD%QSéP[UM]DgNgyégaﬁ
A[alag AaS7NAG4,Paa5]7QdPQRDgNgOcﬁ' (AS)

6
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From eq. ([A.4) one can compute the part of the Maurer-Cartan form which is propor-
tional to R, *®. The result is

aM = 0uAn ag.a+ 2400, NORALY o DEN Gop — AL 1 0uAL G

pai ...as,o ay...as,o as...as)

+A[a1,NAa2,P8uAPY SéP[QM]DgNgvégaﬁ

aszaqas]

1
__A[al,NAaz,PAag,QauAR DEQSJP[SM]DgNg'y&gaﬁ

3 agas)
2

*3

Aluy NAay PAas,Aas RO Aag) 50" T DYTSTTIVMIDIN 550 (A.9)

As was already discussed in section 2, consistency requires that the fields transform
properly under the closure of Ej; with the conformal group [B]. This corresponds to
promoting the global transformations to local ones, which leads to eq. (2.56) and

@y as0 =50 A0 (A.10)

The resulting gauge transformations are the ones of the 5-forms on maximal five-
dimensional supergravity, that is the gauge transformations that one would obtain imposing
the closure of the supersymmetry algebra on the 5-forms in five dimensions. The corre-
sponding field-strength would result from eq. (A.g) with all the indices antisymmetrised,
but this object vanishes identically because it has six indices. Thus the 5-form fields have
no field strength, and they do not correspond to any propagating degree of freedom.

B. Generalised coordinates in a toy model

In this paper we have seen how generalised coordinates have played a crucial role in formu-
lating the dynamics of the gauged supergravities. Such coordinates have not been used in
this way before and in this appendix we will illustrate some of the steps for a simple model
so that the reader can gain some familiarity with the techniques without all the complica-
tions of the five dimensional gauged supergravity theory. We will see that a very simplified
case of the toy model is just the Scherk-Schwarz dimensional reduction procedure [[.

We consider an algebra that has the generators P, and V¢ and R** and R*. They
obey the relations

VeV = —gf*P V7, [RYVP] = fP V7, [R*™ VP =0, [R™ B)=6V> (B1)

and
[R*,R%) = f*°_ R", [R* R = f*0 R". (B.2)

We note that if we define Y* = V¢ 4+ gR“ then
Y VP =gfP vy, [R*YP) =Py, [Vv*,YF] =o0. (B.3)

The generators P, and V< are to be associated with a generalised space-time while R
generate the group G and the generators R*® belong to the adjoint representation of G.
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The group element has the form

g= e:caPa eyaY“ eAaa(x)R‘m 9o (l‘) (B4)

where g, (z) = e?2" is a group element of G and z* and y, are the coordinates of the
generalised space-time. The fields A, and ¢ depend only on the coordinates % and not on
the y.’s. In doing so we assume that the local subgroup of the non-linear realisation possess
y dependent transformations that can be used to bring the group element to the above form
from the most general form. We will also assume that the part of the local subgroup that
depends only on the coordinates z® is the group that contains the identity element. The
above model emerges from that of the five dimensional gauged supergravity theory if we
truncate to the above fields and coordinates, take those that remain to transform in the
adjoint representation and set ©Y = §¥ Wy = 0.

To calculate the Cartan forms we need that
e VY de¥o Y = dy,e®5YP (B.5)

where e“g are the vierbeins, or Cartan forms, for the group G. The Cartan forms are then
easily found to be given by

g tdg = da"E,"P, + dyo E“sVP + da" E, gVP + dy, E*P,

+dat' Gy o RY + da" G aa R™ + dya GG R* + dysGs R™ (B.6)
where
E,"=¢,, E%= eo‘,y(e_“o'f)“’a, Euo= —Auﬁ(e_“o'f)ﬁa, EY* =0 (B.7)
and
GuaR* = 9;1%% ) Gpaa = 8uAa6(e_¢'f)Ba )
G% = geay(e_w'f)'yg , ?:zﬁRaﬁ = geayAa(;f'y‘gE(e_“D'f)eg. (B.8)

In carrying out this calculation we have used the fact that
e ¢l pogesl? (e Ty 5RP (B.9)

where (¢ - f)%g = ¢ f7*3 which contains the only dependence on y,.

In the method of non-linear realisations one usually uses the inverse vierbein to make
the first index on the G’s “flat” that is Goe = (B Gle + (E71)4,G" o where o stands
for the indices on the R’s. The G’s are inert under the rigid transformations ¢ — ggg
up to possible compensating local transformations which maintain the form of the group
element. One finds that

N

GaaR* = g, (00, + gAuaRY)g, (B.10)

while
Gapa = (050, Apg + gAagAbﬁ,f‘;'Ye)(e_“D'f)Ea. (B.11)
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We note that the “flat” Cartan forms do not contain the factor e*, and as a result are
independent of y. Usually the dynamics is constructed from the G’s in which case the
dynamics is independent of y,, however, in this toy model this is not quite the case but
the conclusion is the same.

The transformations of the fields are a little more lengthy to calculate. Using the
commutation relations of egs. (B.1), (B.2) and (B.2) and taking the rigid group element
of the form

go = eV gaa Y gaa % (B.12)

we must evaluate ggg to lowest order in the parameters of ggp. We find that z® is
unchanged, ¥y, becomes a complicated function of y, and the parameters of gg, while the
fields transform as

A:wc = Ago + Qo + C'yAa(Sf’y(Sa y G = BCVR’YQ@ (B13)

where
ey = —g(by + 2%¢y) + ay. (B.14)

In carrying out this calculation we have used y dependent compensating transformations
to maintain the form of the group element as in eq. (B.4). The x dependent part of ¢,
arises from passing e " past e*“fe to create a V® transformation and then processing
this. We note that —gaso = OuCa.

By explicitly calculating the variation of the fields using egs. (B.13) and (B.14) one

finds that the covariant objects are given by

(A;'avaRo‘ - ggl(ég(‘)u + gAwaRY) g, (B.15)
and g
s 2\ €
Fuso = 2 (000, Ang + S Aas A, 77.) (797 (B.16)
The invariant action is then given by
1 A 1
D ab af
/d x <§Ga,aGa,ﬁ + ZFabO‘Fﬁ ) g, (Bl?)

which is the Yang-Mills action coupled to scalars which are in a non-linear realisation of G.

We note that Fy, is not quite 2@'[&71,](1 since there is a factor of 2 out on the AA term.
This discrepancy arises from the fact that the G’s still transform under compensating local
transformations that are y dependent. Taking this into account one arrives at the above
covariant expressions. This point is explained in detail in section 5.

We will now explain that if one takes a particularly simple case one finds the di-
mensional reduction of Scherk and Schwarz. We consider a theory that has undergone a
dimensional reduction with the result that it contains some scalars ¢ in a non-linear reali-
sation, gravity which we neglect and a Kaluza-Klein vector A,* which we keep. Let % be
the coordinates of the remaining space-time after the dimensional reduction and g, one of
the other coordinates that lies in the same direction as the vector field. In this case we can
identify V.= P, R* = —K%, y =y, and A,* = A, where the K’s belong to the SL(D,R)
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algebra associated with gravity in the higher dimension. All these generators are singlets
under the group G to which the scalars belong and one has [~ K%, P,] = 6% P, as required.
The group element of equation (B.4) takes the form

g= ex“PaeyYeAa(x)R“gw(x) (B18)

where now Y =V + ¢gT', T' = myR?* is just a specific element of G and m, are constants.
Clearly, the dynamics is y independent as the Cartan forms g~'dg do not contain this
coordinate. The reason being in this case that Y form an Abelian algebra. In general in
the Scherk-Schwarz dimensional reduction, and indeed in this case, one finds a mass term
for the scalars. The reason it is absent in the above toy model is that @2 = 55 and so is
rather trivial. It is straightforward to generalise the toy model to the case of a non-trivial
© as is the case for the gauged supergravities of sections five.
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